[Table of Contents]

Plasma and Fusion Research

Volume 10, 3402069 (2015)

Regular Articles


Investigation of Toroidal Acceleration and Potential Acceleration Forces in EAST and J-TEXT Plasmas
Fudi WANG1), Bo LYU1), Xiayun PAN1,2), Zhifeng CHENG3), Jun CHEN1,2), Guangming CAO1), Yuming WANG1), Xiang HAN1), Hao LI1), Bin WU1), Zhongyong CHEN3), Manfred BITTER4), Kenneth HILL4), John RICE5), Shigeru MORITA6), Yadong LI1), Ge ZHUANG3), Minyou YE2), Baonian WAN1), Yuejiang SHI7,2) and EAST Team
1)
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
2)
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
3)
College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
4)
Princeton Plasma Physics Laboratory, MS37-B332, Princeton, NJ 08543-0451, USA
5)
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
7)
Department of Nuclear Engineering, Seoul National University, Seoul 151-742, Korea
(Received 25 November 2014 / Accepted 4 May 2015 / Published 27 July 2015)

Abstract

Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping-up and ramping-down. Core toroidal rotation is increasing with Te/Ti increasing in observed region (r/a ≤ 0.3). There may be certain correlation between rotation variation and temporal change in density fluctuation intensity. Meanwhile, it is shown that core counter-current toroidal acceleration is gradually increased with the increase of ramp rate in electron density. Direction reversal from co- to counter-current of edge C4+ toroidal rotation is observed by ramp up in electron density. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between −50 km/s2 in counter-current direction and 70 km/s2 in co-current direction. Eφ may be one of the co-current toroidal forces, which may generate co-current toroidal acceleration, and acts on the plasma as a whole. On the other hand, electron-ion toroidal friction may be one of the counter-current toroidal forces, which may produce counter-current toroidal acceleration, because electrons move in counter-current direction in order to produce a toroidal plasma current.


Keywords

intrinsic rotation, acceleration and toroidal acceleration, density fluctuation, driving and damping forces, toroidal electric field, electron-ion toroidal friction

DOI: 10.1585/pfr.10.3402069


References

  • [1] K.C. Shaing and E.C. Crume, Phys. Rev. Lett. 63, 2369 (1989).
  • [2] R.J. Groebner, K.H. Burrell and R.P. Seraydarian, Phys. Rev. Lett. 64, 3015 (1990).
  • [3] K. Ida et al., Phys. Rev. Lett. 65, 1364 (1990).
  • [4] P.W. Terry, Rev. Mod. Phys. 72, 109 (2000).
  • [5] I.H. Hutchinson et al., Phys. Rev. Lett. 84, 3330 (2000).
  • [6] R.C. Wolf, Plasma Phys. Control. Fusion 45, R1 (2003).
  • [7] J.W. Connor et al., Nucl. Fusion 44, R1 (2004).
  • [8] A. Bondeson and D.J. Ward, Phys. Rev. Lett. 72, 2709 (1994).
  • [9] E.J. Strait et al., Phys. Rev. Lett. 74, 2483 (1995).
  • [10] R. Betti and J.P. Freidberg, Phys. Rev. Lett. 74, 2949 (1995).
  • [11] A.M. Garofalo et al., Phys. Rev. Lett. 82, 3811 (1999).
  • [12] L.J. Zheng, M. Kotschenreuther and M.S. Chu, Phys. Rev. Lett. 95, 255003 (2005).
  • [13] G.G. Craddock and P.H. Diamond, Phys. Rev. Lett. 67, 1535 (1991).
  • [14] T.S. Hahm, Phys. Plasmas 1, 2940 (1994).
  • [15] T.S. Hahm and K.H. Burrell, Phys. Plasmas 2, 1648 (1995).
  • [16] K.H. Burrell, Phys. Plasmas 4, 1499 (1997).
  • [17] A. Bortolon et al., Phys. Rev. Lett. 97, 235003 (2006).
  • [18] J.E. Rice et al., Nucl. Fusion 47, 1618 (2007).
  • [19] C. Angioni et al., Phys. Rev. Lett. 107, 215003 (2011).
  • [20] J.E. Rice et al., Nucl. Fusion 51, 083005 (2011).
  • [21] J.E. Rice et al., Phys. Rev. Lett. 107, 265001 (2011).
  • [22] A. Ince-Cushman et al., Phys. Rev. Lett. 102, 035002 (2009).
  • [23] J.E. Rice et al., Nucl. Fusion 49, 025004 (2009).
  • [24] Y.J. Shi et al., Phys. Rev. Lett. 106, 235001 (2011).
  • [25] K.C. Shaing, Phys. Plasmas 10, 1443 (2003).
  • [26] K.C. Shaing, M.S. Chu and S.A. Sabbagh, Plasma Phys. Control. Fusion 51, 075015 (2009).
  • [27] P.H. Diamond et al., Nucl. Fusion 49, 045002 (2009).
  • [28] O.D. Gurcan, P.H. Diamond and T.S. Hahm, Phys. Rev. Lett. 100, 135001 (2008).
  • [29] F.D. Wang et al., J . Korean Phys. Soc. 59, 2734 (2011).
  • [30] B. Lu et al., Rev. Sci. Instrum. 83, 10E130 (2012).
  • [31] B. Lyu et al., Rev. Sci. Instrum. 85, 11E406 (2014).
  • [32] Z.F. Cheng et al., Rev. Sci. Instrum. 84, 073508 (2013).
  • [33] E.J. Doyle et al., Nucl. Fusion 47, S18 (2007).

This paper may be cited as follows:

Fudi WANG, Bo LYU, Xiayun PAN, Zhifeng CHENG, Jun CHEN, Guangming CAO, Yuming WANG, Xiang HAN, Hao LI, Bin WU, Zhongyong CHEN, Manfred BITTER, Kenneth HILL, John RICE, Shigeru MORITA, Yadong LI, Ge ZHUANG, Minyou YE, Baonian WAN, Yuejiang SHI and EAST Team, Plasma Fusion Res. 10, 3402069 (2015).