[Table of Contents]

Plasma and Fusion Research

Volume 10, 1402056 (2015)

Regular Articles


Creation of Impurity Source inside Plasmas with Various Types of Tracer-Encapsulated Solid Pellet
Naoki TAMURA, Shigeru SUDO, Chihiro SUZUKI and Hisamichi FUNABA
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
(Received 29 July 2014 / Accepted 7 April 2015 / Published 26 May 2015)

Abstract

A Tracer-Encapsulated Solid Pellet (TESPEL) was developed for promoting an impurity transport study in a magnetically-confined plasma. One of the advantages of the TESPEL is that it can make a three-dimensionally localized impurity source in the plasma. This enables us to inject the tracer impurity inside or in the vicinity of the region of interest. Recently, a new-type TESPEL with a thinner outer shell has been developed in order to achieve a shallower deposition of the tracer impurity. With the TESPEL having the thinner shell, we have achieved about 4 cm shallower deposition of the tracer impurity, compared with the case of the conventional thick-shell type TESPEL with the same outer diameter of about 700 µm. Moreover, for the achievement of the further shallower deposition of the tracer impurity, we also developed the TESPEL with a tracer-impurity-doped thin shell. After the injection of the TESPEL with the tracer-impurity-doped thin shell, the line emissions from the highly-ionized doped impurity are clearly observed with a vacuum ultraviolet spectrometer, which clearly demonstrates its ability to carry the impurity as a new tool.


Keywords

TESPEL, impurity pellet, impurity source, impurity transport

DOI: 10.1585/pfr.10.1402056


References

  • [1] S. Sudo, J. Plasma Fusion Res. 69, 1349 (1993).
  • [2] S. Sudo and N. Tamura, Rev. Sci. Instrum. 83, 023503 (2012).
  • [3] O. Motojima et al., Phys. Plasmas 6, 1843 (1999).
  • [4] O. Kaneko et al., Nucl. Fusion 53, 104015 (2013).
  • [5] J. Sanchez et al., Nucl. Fusion 51, 094022 (2011).
  • [6] C. Hidalgo and K. McCarthy, private communication.
  • [7] N. Ohyabu et al., Phys. Rev. Lett. 97, 055002 (2006).
  • [8] T. Shimozuma et al., Fusion Sci. Technol. 58, 530 (2010).
  • [9] Y. Takeiri et al., Fusion Sci. Technol. 58, 482 (2010).
  • [10] N. Tamura et al., Rev. Sci. Instrum. 79, 10F541 (2008).
  • [11] I. Yamada et al., Fusion Sci. Technol. 58, 345 (2010).
  • [12] B.J. Peterson et al., Fusion Sci. Technol. 58, 412 (2010).
  • [13] B.J. Peterson et al., Plasma Phys. Control. Fusion 45, 1167 (2003).
  • [14] Datasheet of a 20 ch AXUV photodiode array: http://optodiode.com/pdf/AXUV20ELG.pdf
  • [15] J.L. Schwob, A.W. Wouters, S. Suckewer and M. Finkenthal, Rev. Sci. Instrum. 58, 1601 (1987).
  • [16] C. Suzuki et al., J. Phys. B: At. Mol. Opt. Phys. 45, 135002 (2012).
  • [17] M. Takagi et al., Fusion Sci. Technol. 41, 278 (2002).
  • [18] S. Sudo et al., Plasma Fusion Res. 9, 1202082 (2014).
  • [19] H. Ohashi et al., Appl. Phys. Lett. 104, 234107 (2014).
  • [20] R. Sakamoto et al., Nucl. Fusion 49, 085002 (2009).
  • [21] S.P. Hirshman, Phys. Fluids 26, 3553 (1983).
  • [22] S. Sudo et al., Plasma Phys. Control. Fusion 45, A425 (2003).
  • [23] S. Sudo et al., Nucl. Fusion 52, 063012 (2012).
  • [24] S. Sudo et al., Plasma Phys. Control. Fusion 55, 095014 (2013).
  • [25] K. Khlopenkov et al., Rev. Sci. Instrum. 69, 3194 (1998).

This paper may be cited as follows:

Naoki TAMURA, Shigeru SUDO, Chihiro SUZUKI and Hisamichi FUNABA, Plasma Fusion Res. 10, 1402056 (2015).