[Table of Contents]

Plasma and Fusion Research

Volume 10, 1401081 (2015)

Regular Articles


Design Study of a Multipole Ion Trap for Beam Physics Applications
Kei FUKUSHIMA and Hiromi OKAMOTO
Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
(Received 2 August 2015 / Accepted 3 September 2015 / Published 28 December 2015)

Abstract

A unique linear Paul trap is designed for a systematic experimental study of nonlinear beam dynamics with the tabletop apparatus “S-POD” at Hiroshima University. S-POD is the abbreviation of “Simulator of Particle Orbit Dynamics” where we can produce a non-neutral plasma physically equivalent to a charged-particle beam in an alternating-gradient focusing channel. Unlike a regular Paul trap with four quadrupole rods, the present trap configuration includes extra electrodes that enable us to control the strengths and time structures of low-order nonlinear fields independently of the linear focusing potential. We here consider the insertion of thin metallic plates in between the quadrupole rods. The size and arrangement of those extra electrodes are optimized by using a Poisson solver. Simple scaling laws are derived to make a quick estimate of the sextupole and octupole field strengths as a function of the plate dimension. Particle tracking simulations are performed to demonstrate the controlled excitation of nonlinear resonances in the modified Paul trap.


Keywords

linear Paul trap, charged-particle beam dynamics, nonlinear resonance, application of non-neutral plasma

DOI: 10.1585/pfr.10.1401081


References

  • [1] A.W. Chao, M. Tigner (Eds.), Handbook of Accelerator Physics and Engineering (World Scientific, Singapore, 1999) and references therein.
  • [2] See, e.g., Proceedings of the 54th ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness and High-Power Hadron Beams (Michigan, USA, 2014).
  • [3] M. Reiser, Theory and Design of Charged Particle Beams (John Wiley & Sons, New York, 2008) and references therein.
  • [4] H. Okamoto and H. Tanaka, Nucl. Instrum. Methods A 437, 178 (1999).
  • [5] R. Takai, H. Enokizono, K. Ito, Y. Mizuno, K. Okabe and H. Okamoto, Jpn. J. Appl. Phys. 45, 5332 (2006).
  • [6] S. Ohtsubo, M. Fujioka, H. Higaki, K. Ito, H. Okamoto, H. Sugimoto and S.M. Lund, Phys. Rev. ST Accel. Beams 13, 044201 (2010).
  • [7] H. Takeuchi, K. Fukushima, K. Ito, K. Moriya, H. Okamoto and H. Sugimoto, Phys. Rev. ST Accel. Beams 15, 074201 (2012).
  • [8] H. Okamoto, M. Endo, K. Fukushima, H. Higaki, K. Ito, K. Moriya, S. Yamaguchi and S.M. Lund, Nucl. Instrum. Methods A 733, 119 (2014).
  • [9] K. Fukushima, K. Ito, H. Okamoto, S. Yamaguchi, K. Moriya, H. Higaki, T. Okano and S.M. Lund, Nucl. Instrum. Methods A 733, 18 (2014).
  • [10] K. Moriya, K. Fukushima, K. Ito, T. Okano, H. Okamoto, S.L. Sheehy, D.J. Kelliher, S. Machida and C.R. Prior, Phys. Rev. ST Accel. Beams 18, 034001 (2015).
  • [11] R.C. Davidson, H. Qin and G. Shvets, Phys. Plasma 7, 1020 (2000).
  • [12] E.P. Gilson, R.C. Davidson, P.C. Efthimion and R. Majeski, Phys. Rev. Lett. 92, 155002 (2004).
  • [13] E.P. Gilson et al., Phys. Plasmas 20, 055706 (2013).
  • [14] P.K. Ghosh, Ion Traps (Oxford Science, Oxford, 1995) and references therein.
  • [15] H. Okamoto, Y. Wada and R. Takai, Nucl. Instrum. Methods A 485, 244 (2002).
  • [16] D.P. Grote, A. Friedman, G.D. Craig, I. Haber and W.M. Sharp, Nucl. Instrum. Methods A 464, 563 (2001).
  • [17] D.R. Denison, J. Vacuum Sci. Technol. 8, 266 (1971).

This paper may be cited as follows:

Kei FUKUSHIMA and Hiromi OKAMOTO, Plasma Fusion Res. 10, 1401081 (2015).