[Table of Contents]

Plasma and Fusion Research

Volume 9, 4406106 (2014)

Regular Articles


Transformation of the Beam Intensity Distribution and Formation of a Uniform Ion Beam by Means of Nonlinear Focusing
Yosuke YURI, Takahiro YUYAMA, Tomohisa ISHIZAKA, Ikuo ISHIBORI and Susumu OKUMURA
Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
(Received 27 June 2013 / Accepted 28 November 2013 / Published 27 June 2014)

Abstract

Avoiding undesirable thermal stress or damage of a target vessel is an essential subject in high-intensity beam irradiation for accelerator-driven neutron production. A promising method to tailor the transverse beam intensity distribution for uniform beam irradiation on the target is the use of multipole magnets. We, therefore, study the transformation and uniformization of the transverse intensity distribution by means of nonlinear focusing induced from multipole magnets. It is theoretically described how the intensity distribution is transformed and made uniform by the nonlinear focusing force. Large-area uniform proton and heavy-ion beams are experimentally formed using octupole magnets at the azimuthally-varying-field cyclotron in Japan Atomic Energy Agency.


Keywords

multipole magnet, octupole magnet, uniform irradiation, ion beam, beam transport system, beam intensity distribution

DOI: 10.1585/pfr.9.4406106


References

  • [1] P.F. Meads, Jr., IEEE Trans. Nucl. Sci. 30, 2838 (1983).
  • [2] Y. Yuri, N. Miyawaki, T. Kamiya, W. Yokota, K. Arakawa and M. Fukuda, Phys. Rev. ST Accel. Beams 10, 104001 (2007).
  • [3] N. Tsoupas, L. Ahrens, S. Bellavia, R. Bonati, K.A. Brown, I-Hung Chiang, C.J. Gardner, D. Gassner, S. Jao, W.W. Mackay, I. Marneris, W. Meng, D. Phillips, P. Pile, R. Prigl, A. Rusek, L. Snydstrup and K. Zeno, Phys. Rev. ST Accel. Beams 10, 024701 (2007).
  • [4] A. Bogdanov, V. Anferov, M. Ball, D.V. Baxter, V.P. Derenchuk, A.V. Klyachko, T. Rinckel and K. Solberg, Proc. 2007 Particle Accelerator Conference, Albuquerque, USA, 2007, p.1748.
  • [5] Y. Yuri, T. Ishizaka, T. Yuyama, I. Ishibori, S. Okumura and K. Yoshida, Nucl. Instrum. Methods Phys. Res. A 642, 10 (2011).
  • [6] Y. Yuri, T. Yuyama, T. Ishizaka, I. Ishibori and S. Okumura, J. Phys. Soc. Jpn. 81, 064501 (2012).
  • [7] P.A.P. Nghiem, N. Chauvin, M. Comunian, O. Delferriere, R. Duperrier, A. Mosnier, C. Oliver and D. Uriot, Nucl. Instrum. Methods Phys. Res. A 654, 63 (2011).
  • [8] S. Meigo, H. Fujimori, M. Ooi, S. Sakamoto and M. Futakawa, Proc. 9th Annual Meeting of Particle Accelerator Society of Japan 2012, p.75 [in Japanese].
  • [9] K. Thomsen, F. Heinrich, M. Butzek, J. Wolters, F. Sordo and A.I.S. Holm, Nucl. Instrum. Methods Phys. Res. A 682, 42 (2012).
  • [10] Z. Guo, J.-Y. Tang, Z. Yang, X.-Q. Wang and B. Sun, Nucl. Instrum. Methods Phys. Res. A 691, 97 (2012).
  • [11] S.-P. Yun, B.-S. Park, K.-T. Seol, Y.-G. Song, H.-S. Kim, J.-H. Jang, H.-J. Kwon and Y.-S. Cho, Proc. 3rd International Particle Accelerator Conference, New Orleans, USA, 2012, p.2579.
  • [12] Y. Yuri, J. Phys. Soc. Jpn. 79, 125002 (2010).
  • [13] G.R. Lynch and O.I. Dahl, Nucl. Instrum. Methods Phys. Res. B 58, 6 (1991).
  • [14] Y. Baudinet-Robinet, Nucl. Instrum. Methods 190, 197 (1981).
  • [15] J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219-220, 1027 (2004).
  • [16] Y. Yuri, T. Ishizaka, T. Yuyama, I. Ishibori and S. Okumura, Nucl. Instrum. Methods Phys. Res. A 727, 40 (2013).
  • [17] M. Imaizumi, Y. Yuri, P.R. Bolton, S. Sato and T. Ohshima, Proc. 38th IEEE Photovoltaic Specialist Conference, Austin, USA, 2012 p.2831.

This paper may be cited as follows:

Yosuke YURI, Takahiro YUYAMA, Tomohisa ISHIZAKA, Ikuo ISHIBORI and Susumu OKUMURA, Plasma Fusion Res. 9, 4406106 (2014).