[Table of Contents]

Plasma and Fusion Research

Volume 9, 4404101 (2014)

Regular Articles


Low Energy Neutron Measurements in High Energy Density Plasmas using the National Ignition Facility
Lee A. BERNSTEIN, Darren L. BLEUEL, Joseph A. CAGGIANO, Charles CERJAN, Richard J. FORTNER, Julie GOSTIC, Patrick M. GRANT, Narek GHARIBYAN, Christian HAGMANN, Robert HATARIK, Eugene A. HENRY, Daniel SAYRE, Dieter H. G. SCHNEIDER, Wolfgang STOEFFL, Dawn A. SHAUGHNESSY, Dennis P. McNABB, Charles B. YEAMANS, Natalia P. ZAITSEVA, Joshua A. BROWN1), Brian H. DAUB1), Nicholas M. BRICKNER1), Paul F. DAVIS1), Bethany L. GOLDBLUM1), Karl A. VAN BIBBER1), Jasmina VUJIC1), Mohammad S. BASUNIA2), Richard B. FIRESTONE2), Aaron M. HURST2) and Andrew M. ROGERS2)
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94551, USA
1)
Department of Nuclear Engineering, University of California, Berkeley CA 94720, USA
2)
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley CA 94720, USA
(Received 11 June 2013 / Accepted 18 September 2013 / Published 27 June 2014)

Abstract

Deuterium-tritium-loaded capsules at the National Ignition Facility (NIF) are now regularly producing a neutron rich high energy density plasma (nHEDP) with a low-energy “ICF-thermal” neutron density > 1021 neutrons/cm3. These low-energy neutrons are produced via multiple scatter off of the highly compressed capsule and therefore provide insight into the confinement time (τconfinement) of the assembled plasma. Neutrons are formed in the center of the 5 m NIF chamber that is well suited for minimizing “room return” thermal capture. This nHEDP environment is befitting for activation-based measurements of the (n,γ) cross sections responsible for the formation of heavy elements in astrophysical settings. These experiments also offer the first opportunity to search for the effects of nuclear-plasma interaction-induced excited state population on (n,x) reaction rates in a stellar-like plasma environment. Unfortunately, no capability currently exists at the NIF to measure the neutron spectrum in a capsule down to the 100 eV level required to enable these new classes of nuclear-plasma experiments. In this paper we will discuss nHEDP-based neutron capture experiments, compare them to accelerator-based (n,γ) measurements, and discuss the requirements for a NIF-based low energy neutron spectrometer (LENS).


Keywords

ICF plasma, neutron time-of-flight, nuclear-plasma interaction, stellar nucleosynthesis, s-process

DOI: 10.1585/pfr.9.4404101


References

  • [1] A. Mackinnon et al., Phys. Rev. Lett. 108, 215005 (2012).
  • [2] M.R. Busso, R. Gallino and G.J. Wasserburg, Annu. Rev. Astron. Astrophys. 37, 239 (1999).
  • [3] Report of the 2009 Workshop on Basic Research Needs for High-Energy-Density Laboratory Physics, Chairs: Robert Rosner and David Hammer; http://science.energy.gov/~/media/fes/pdf/workshop-reports/Hedlp_brn_workshop_report_oct_2010.pdf
  • [4] J. Gostic, D.A. Shaughnessy, K.T. Moore, I.D. Hutcheon, P.M. Grant and K.J. Moody, Rev. Sci. Instrum. 83, 10D904 (2012); doi: 10.1063/1.4732856.
  • [5] D. Shaughnessy et al., (to be published).
  • [6] O. Roig et al., EPJ Web of Conferences 2, 05003 (2010); doi:10.1051/epjconf/20100205003.
  • [7] R. Hatarik et al., (to be published).
  • [8] M.B. Nelson and M.D. Cable, Rev. Sci. Instrum. 63, 4874 (1992); doi: 10.1063/1.1143536.
  • [9] M.M. Marinak et al., Phys. Plasmas 3, 2070 (1996).
  • [10] F. Kappeler and A. Mengoni, Nucl. Phys. A777, 291 (2006).
  • [11] F. Kappeler, 1st EMMI-JINA Wkshp. on Nucl. Phys. in Hot Dense Plasmas, 2/11-13/11, Univ. of Notre Dame, London, UK; http://www.jinaweb.org/events/NP2011/kaeppeler_london.pdf
  • [12] M.R. Harston and J.F. Chemin, Phys. Rev. C 59, 2462 (1999).
  • [13] A. Palffy, J. Evers and C.H. Keitel, Phys. Rev. Lett. 99, 172502 (2007).
  • [14] T. Hayakawa et al., Phys. Rev. Lett. 93, 161102 (2004).
  • [15] L.P. Chau, O. Meusel, U. Ratzinger, A. Schempp and K. Volk, The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ), Proceedings of EPAC 2006, Edinburgh, Scotland (2006).
  • [16] R. Hatarik, L.A. Bernstein, J.A. Caggiano, M.L. Carman, D.H.G. Schneider, N.P. Zaitseva and M. Wiedeking, Rev. Sci. Instrum. 83, 10D911 (2012).
  • [17] Y. Arikawa et al., Rev. Sci. Instrum. 80, 113504 (2009).
  • [18] J.P. Meulders, P. Leleux, P.C. Macq and C. Pirart, Phys. Med. Biol. 20, 235 (1975).
  • [19] D.L. Bleuel et al., Nucl. Instrum. Meth. B 261, 974 (2007); http://dx.doi.org/10.1016/j.nimb.2007.04.125

This paper may be cited as follows:

Lee A. BERNSTEIN, Darren L. BLEUEL, Joseph A. CAGGIANO, Charles CERJAN, Richard J. FORTNER, Julie GOSTIC, Patrick M. GRANT, Narek GHARIBYAN, Christian HAGMANN, Robert HATARIK, Eugene A. HENRY, Daniel SAYRE, Dieter H. G. SCHNEIDER, Wolfgang STOEFFL, Dawn A. SHAUGHNESSY, Dennis P. McNABB, Charles B. YEAMANS, Natalia P. ZAITSEVA, Joshua A. BROWN, Brian H. DAUB, Nicholas M. BRICKNER, Paul F. DAVIS, Bethany L. GOLDBLUM, Karl A. VAN BIBBER, Jasmina VUJIC, Mohammad S. BASUNIA, Richard B. FIRESTONE, Aaron M. HURST and Andrew M. ROGERS, Plasma Fusion Res. 9, 4404101 (2014).