[Table of Contents]

Plasma and Fusion Research

Volume 9, 3403023 (2014)

Regular Articles

JINTRAC: A System of Codes for Integrated Simulation of Tokamak Scenarios
Michele ROMANELLI1), Gerard CORRIGAN1), Vassili PARAIL1), Sven WIESEN1,2), Roberto AMBROSINO3), Paula DA SILVA ARESTA BELO1,4), Luca GARZOTTI1), Derek HARTING1), Florian KÖCHL1,5), Tuomas KOSKELA1,6), Laura LAURO-TARONI1), Chiara MARCHETTO1,7), Massimiliano MATTEI3), Elina MILITELLO-ASP1), Maria Filomena Ferreira NAVE4), Stanislas PAMELA1), Antti SALMI6), Pär STRAND8), Gabor SZEPESI7) and EFDA-JET Contributors9)
Association EURATOM-CCFE, Culham Science Centre, OX143XU, Abingdon, UK
Association EURATOM-FZJ, Forschungszentrum Jülich, D-52425 Jülich, Germany
Association EURATOM-ENEA, CREATE, University of Naples “Federico II”, Italy
Association EURATOM-IPFN, Instituto Superior Técnico, Universidade de Lisboa, Portugal
Association EURATOM-AÖW, technical University Wien, 1020 Vienna, Austria
Association EURATOM-TEKES, Aalto University, PO Box 4100, 02015 Espoo, Finland
Association EURATOM-ENEA, Istituto di Fisica del Plasma, CNR, Milano, Italy
Association EURATOM-VR, Chalmers University of Technology, Göteborg, Sweden
JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK
(Received 9 December 2013 / Accepted 4 February 2014 / Published 7 April 2014)


Operation and exploitation of present and future Tokamak reactors require advanced scenario modeling in order to optimize engineering parameters in the design phase as well as physics performance during the exploitation phase. The simulation of Tokamak scenarios involves simultaneous modeling of different regions of the reactor, characterized by different physics and symmetries, in order to predict quantities such as particle and energy confinement, fusion yield, power deposited on wall, wall load from fast particles. JINTRAC is a system of 25 interfaced Tokamak-physics codes for the integrated simulation of all phases of a Tokamak scenario. JINTRAC predictions reflect the physics and assumptions implemented in each module and extensive comparison with experimental data is needed to allow validation of the models and improvement of Tokamak-physics understanding.


Tokamak, scenario modelling, integrated modelling, transport, scrape-off layer, fuelling and heating

DOI: 10.1585/pfr.9.3403023


  • [1] J. Wesson, Tokamaks (Oxford University Press, 2011).
  • [2] L.L. Lao et al., Nucl. Fusion 25, 1421 (1985).
  • [3] R. Albanese et al., ISEM (2003), Versailles, pp.404-405.
  • [4] G. Cenacchi and A. Taroni, 1988 JET-IR(88)03.
  • [5] L. Lauro-Taroni et al., Proc. 21st EPS I, 102 (1994).
  • [6] J.A. Heikkinen et al., J. Comp. Phys. 173, 527 (2001).
  • [7] R. Simonini et al., Contrib. Plasma Phys. 34, 368 (1994).
  • [8] D. Reiter J. Nucl. Mater. 196-198, 80 (1992).
  • [9] F. Guzmán et al., J. Nucl. Mater. 438, S585 (2013).
  • [10] M. Erba et al., Pl. Phys. Control. Fusion 39, 261 (1997).
  • [11] W.A. Houlberg et al., Phys. Plasmas 4, 3230 (1997).
  • [12] R.E. Waltz et al., Phys. Plasmas 4, 2482 (1997).
  • [13] G.M. Staebler et al., Phys. Plasmas 14, 055909 (2007).
  • [14] H. Nordman et al., Nucl. Fusion 30, 983 (1990).
  • [15] S. Wiesen et al., JET ITC-Report (2008).
  • [16] C.D. Challis et al., Nucl. Fusion 29, 563 (1989).
  • [17] S. Tomar, J. Comp. Physics 40, 104 (1981).
  • [18] F. Porcelli et al., Pl. Phys. Control. Fusion 38, 2163 (1996).
  • [19] E. Militello-Asp et al., Proc. 40th EPS P2.158 (2013).
  • [20] D. Harting et al., J. Nucl. Mater. 438, 480 (2013).
  • [21] S. Wiesen et al., Pl. Ph. Control. Fusion 53, 124039 (2011).

This paper may be cited as follows:

Michele ROMANELLI, Gerard CORRIGAN, Vassili PARAIL, Sven WIESEN, Roberto AMBROSINO, Paula DA SILVA ARESTA BELO, Luca GARZOTTI, Derek HARTING, Florian KÖCHL, Tuomas KOSKELA, Laura LAURO-TARONI, Chiara MARCHETTO, Massimiliano MATTEI, Elina MILITELLO-ASP, Maria Filomena Ferreira NAVE, Stanislas PAMELA, Antti SALMI, Pär STRAND, Gabor SZEPESI and EFDA-JET Contributors, Plasma Fusion Res. 9, 3403023 (2014).