[Table of Contents]

Plasma and Fusion Research

Volume 9, 3402116 (2014)

Regular Articles


Generation and Control of High Intermittent Heat Load Pattern for Divertor Simulation Studies in GAMMA 10 Tandem Mirror
Ryutaro MINAMI, Tsuyoshi IMAI, Tsuyoshi KARIYA, Tomoharu NUMAKURA, Taku EGUCHI, Ryo KAWARASAKI, Kazuhiro NAKAZAWA, Takaki KATO, Fumiya SATO, Hirotaka NANZAI, Makoto UEHARA, Yoichi ENDO, Mafumi HIRATA, Makoto ICHIMURA, Ryuya IKEZOE, Isao KATANUMA, Junko KOHAGURA, Yousuke NAKASHIMA, Kensuke OKI, Mizuki SAKAMOTO, Masayuki YOSHIKAWA and GAMMA 10 Group
Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
(Received 18 November 2013 / Accepted 29 May 2014 / Published 4 July 2014)

Abstract

Development of high power gyrotrons and electron cyclotron heating (ECH) systems for the power modulation experiments in GAMMA 10 have been started in order to generate and control the high heat flux and to make the ELM (edge localized mode) like intermittent heat load pattern for divertor simulation studies. ECH for potential formation at plug region (P-ECH) produces electron flow with high energy along the magnetic filed line. By modulating the ECH power, we can obtain arbitrary pulse heat load patterns. By changing the on/off timing, we can simulate the ELM intermittent heat pulses. The heat flux factor increases almost linearly with ECH power. An intense axial electron flow with energy from hundreds of eV to a few keV generated by fundamental P-ECH is observed. When ECH is turned off, a short burst appears in the end loss ion current due to the axial drain of the confined plasma.


Keywords

ECH power modulation, high heat flux, ELM, gyrotron, GAMMA 10 tandem mirror

DOI: 10.1585/pfr.9.3402116


References

  • [1] T. Imai et al., Trans. Fusion Sci. Technol. 63, 1T, 8 (2013).
  • [2] H. Idei et al., US-Japan Workshop Physics of RF Heating of Fusion Plasmas, September 24-26 (2013).
  • [3] R. Minami et al., Nucl. Fusion 53, 063003 (2013).
  • [4] T. Kariya et al., Trans. Fusion Sci. Technol. 51, 2T, 397 (2007).
  • [5] Y. Tatematsu et al., Jpn. J. Appl. Phys. 44, No.9A, 6791 (2005).
  • [6] Y. Nakashima et al., 23rd IAEA Fusion Energy Conf. FTP/P1-33 (2010).
  • [7] Y. Nakashima et al., J. Nucl. Mater. 415, S996 (2011).
  • [8] T. Saito et al., Fusion Eng. Des. 26, 241 (1995).
  • [9] T. Kuwabara et al., Rev. Sci. Instrum. 65, 936 (1994).
  • [10] G. Federici et al., J. Nucl. Mater. 290, 260 (2001).
  • [11] Y. Ueda et al., Fusion Eng. Des. 82, 1904 (2007).

This paper may be cited as follows:

Ryutaro MINAMI, Tsuyoshi IMAI, Tsuyoshi KARIYA, Tomoharu NUMAKURA, Taku EGUCHI, Ryo KAWARASAKI, Kazuhiro NAKAZAWA, Takaki KATO, Fumiya SATO, Hirotaka NANZAI, Makoto UEHARA, Yoichi ENDO, Mafumi HIRATA, Makoto ICHIMURA, Ryuya IKEZOE, Isao KATANUMA, Junko KOHAGURA, Yousuke NAKASHIMA, Kensuke OKI, Mizuki SAKAMOTO, Masayuki YOSHIKAWA and GAMMA 10 Group, Plasma Fusion Res. 9, 3402116 (2014).