[Table of Contents]

Plasma and Fusion Research

Volume 9, 3402017 (2014)

Regular Articles


Integration of Large-Scale Simulations and Numerical Modelling Tools in Close Link with the LHD Experiment
Masayuki YOKOYAMA, Ryosuke SEKI, Chihiro SUZUKI, Masahiko EMOTO, Katsumi IDA, Masaki OSAKABE, Sadayoshi MURAKAMI1), Yasuhiro SUZUKI, Shinsuke SATAKE, Masanori NUNAMI, Atsushi FUKUYAMA1), Hiroshi YAMADA, Numerical Simulation Research Project and LHD Experiment Group
National Institute for Fusion Science, Toki 509-5292, Japan
1)
Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
(Received 10 December 2013 / Accepted 20 January 2014 / Published 28 February 2014)

Abstract

An integrated transport analysis suite, TASK3D-a, has been developed with the emphasis on establishing close-link with the LHD experiment database. The suite makes possible energy transport analyses for huge cases, from which the systematic understandings can be elucidated. A statistical approach for implementing large-scale simulation results into the integrated modelling has been tested. The importance of strengthening trilateral links among experiments, large-scale simulations, and integrated numerical modelling tools such as TASK3D, is crucial for promoting systematic understandings, performing validations, and then increasing the predictive capabilities.


Keywords

TASK3D-a, LHD, energy confinement, Kaiseki Data Server, large-scale simulation

DOI: 10.1585/pfr.9.3402017


References

  • [1] O. Kaneko, H. Yamada et al., Nucl. Fusion 53, 104015 (2013).
  • [2] H. Yamada for LHD Experiment Group., O4-1, presented at 22nd International Toki Conference (Nov. 2012).
  • [3] For example: NIFS Peer Review Report in FY2012, http://www.nifs.ac.jp/hyokarep/gaibuhyouka_24.pdf (in Japanese).
  • [4] M. Yokoyama et al., Plasma Fusion Res. 8, 2403016 (2013).
  • [5] C.D. Beidler and W.D. D'haeseleer, Plasma Phys. Control. Fusion 37, 463 (1995).
  • [6] M. Yokoyama for TASK3D Users and Developers, NIFS-MEMO-61, National Institute for Fusion Science, Nov. 2012.
  • [7] M. Emoto et al., Fusion Eng. Des. 81, 2019 (2006).
  • [8] C. Suzuki et al., Plasma Phys. Control. Fusion 55, 014016 (2013).
  • [9] K. Nagaoka et al., Nucl. Fusion 51, 083022 (2011).
  • [10] A. Dinklage, M. Yokoyama et al., Nucl. Fusion 53, 063022 (2013).
  • [11] R. Sakamoto et al., Fusion Sci. Technol. 58, 53 (2010).
  • [12] Y. Suzuki et al., Nucl. Fusion 53, 073045 (2013).
  • [13] Y. Suzuki et al., Nucl. Fusion 46, L19 (2006).
  • [14] S.P. Hirshman and J.C. Whitson, Phys. Fluids 26, 3553 (1983).
  • [15] For example, ITER Physics Basis, Nucl. Fusion 39, 2175 (1999).
  • [16] H. Yamada et al., Nucl. Fusion 45, 1684 (2005).
  • [17] K. Ida et al., Phys. Rev. Lett. 111, 055001 (2013).
  • [18] M. Nunami et al., Phys. Plasmas 19, 042504 (2012).
  • [19] M. Nunami et al., Phys. Plasmas 20, 092307 (2013).
  • [20] M. Yokoyama and K.Y. Watanabe, Nucl. Fusion 45, 1600 (2005).

This paper may be cited as follows:

Masayuki YOKOYAMA, Ryosuke SEKI, Chihiro SUZUKI, Masahiko EMOTO, Katsumi IDA, Masaki OSAKABE, Sadayoshi MURAKAMI, Yasuhiro SUZUKI, Shinsuke SATAKE, Masanori NUNAMI, Atsushi FUKUYAMA, Hiroshi YAMADA, Numerical Simulation Research Project and LHD Experiment Group, Plasma Fusion Res. 9, 3402017 (2014).