[Table of Contents]

Plasma and Fusion Research

Volume 9, 3401119 (2014)

Regular Articles


Charge Transfer Cross Sections of Slow Multiply Charged Neon Ions in Collisions with Noble Gas Atoms
Toshio KUSAKABE and Toshizo SHIRAI1)
Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
1)
Japan Atomic Energy Research Institute, Naka-shi, Ibaraki 319-0193, Japan
(Received 10 December 2013 / Accepted 1 April 2014 / Published 4 July 2014)

Abstract

Single and multiple charge transfer cross sections for Neq+ (q = 2 - 6) ions were measured in collisions with Ne, Ar, Kr, and Xe atoms at 2q keV. Quintuple charge transfer cross sections σ6,1 were derived for the Ne6+ + Ne, Ar, and Xe collisions. In Ne atoms, the double, triple, and quadruple charge transfer of Ne2+, Ne3+, and Ne4+ ions, respectively, represent so-called symmetric resonant charge transfer processes. The present data for these collisions are in good accordance with the previous data. The scaling properties of the total, single, and multiple charge transfer cross sections were examined, and it was found that the double, triple, and quadruple charge transfer cross sections can be scaled using the second, third, and fourth ionization potentials, respectively.


Keywords

charge transfer cross section, slow multiply charged neon ion, noble gas atom, growth rate method, scaling law, plasma modeling

DOI: 10.1585/pfr.9.3401119


References

  • [1] R.K. Janev, Atomic and Molecular Processes in Fusion Edge Plasmas (Plenum, New York, 1995) p.1.
  • [2] ITER Physics Basis, edited by D.W. Ignat, Nucl. Fusion 39, 2417 (1999).
  • [3] C.M. Lisse et al., Science 274, 205 (1996).
  • [4] H .Klinger et al., J. Phys. B: At. Mol. Phys. 8, 230 (1975).
  • [5] H. Klinger et al., J. Chem. Phys. 65, 3427 (1976).
  • [6] A. Müller and E. Salzborn, Phys. Lett. 62A, 391 (1977).
  • [7] E. Salzborn and A. Müller, Electronic and Atomic Collisions (Noth Holland, Amsterdam, 1980) p.407.
  • [8] T. Kusakabe et al., J. Phys. B: At. Mol. Phys. 19, 2165 (1986).
  • [9] T. Kusakabe et al., J. Phys. Soc. Jpn. 59, 1218 (1990).
  • [10] T. Kusakabe et al., Plasma Fusion Res. 8, 2401145 (2013).
  • [11] T. Kusakabe et al., Phys. Scr. T73, 378 (1997).
  • [12] T. Kusakabe et al., Phys. Rev. A 68, 050701(R) (2003).
  • [13] T. Kusakabe et al., Phys. Rev. A 73, 022706 (2006).
  • [14] T. Kusakabe et al., Plasma Fusion Res. 7, 2401062 (2012).
  • [15] Y. Kaneko et al., J. Phys. B: At. Mol. Phys. 14, 881 (1981).
  • [16] R.K. Janev and L.P. Presnyakov, Phys. Rep. 70, 1 (1981).
  • [17] M. Kimura et al., J. Phys. B: At. Mol. Opt. Phys. 28, L643 (1995).
  • [18] H. Ryufuku et al., Phys. Rev. A 21, 745 (1980).
  • [19] R. Mann et al., J. Phys. B: At. Mol. Phys. 14, 1161 (1981).
  • [20] S. Bashkin and J.O. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams. 1. Hydrogen I–Phosphorus XV (North-Holland Pub. Co., Amsterdam, 1975).
  • [21] T. Kusakabe et al., Nucl. Instrum. Methods B 205, 600 (2003).
  • [22] T. Kusakabe et al., Phys. Scr. T3, 191 (1983).
  • [23] M. Sakisaka et al., J. Phys. Soc. Jpn. 52, 716 (1983).

This paper may be cited as follows:

Toshio KUSAKABE and Toshizo SHIRAI, Plasma Fusion Res. 9, 3401119 (2014).