[Table of Contents]

Plasma and Fusion Research

Volume 9, 3401117 (2014)

Regular Articles


First-Principles Study on Migration of Vacancy in Tungsten
Yasuhiro ODA1), Atsushi M. ITO1), Arimichi TAKAYAMA1) and Hiroaki NAKAMURA1,2)
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)
Nagoya University, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 10 December 2013 / Accepted 28 April 2014 / Published 29 July 2014)

Abstract

We calculated the binding and migration energies of mono-vacancies and di-vacancies in tungsten material using density functional theory. Mono-vacancies diffuse in the [111] direction easier than in the [001] direction. The migration energies of mono-vacancies and di-vacancies are almost the same; moreover, the migration of mono-vacancies and di-vacancies is nearly similar. The di-vacancy binding energies are almost zero or negative. The interactions between two vacancies in tungsten material are repulsive from the second to the fifth nearest neighbors. The vacancies are difficult to aggregate because di-vacancies are less stable than mono-vacancies.


Keywords

tungsten, vacancy, helium bubble, density functional theory, nudged elastic band

DOI: 10.1585/pfr.9.3401117


References

  • [1] S.K. Das and M. Kaminsky, Adv. Chem. Ser. 158, 112 (1976).
  • [2] S. Kajita, T. Saeki, Y. Hirahata, M. Yajima, N. Ohno, R. Yoshihara and N. Yoshida, Jpn. J. Appl. Phys. 50, 08JG01 (2011).
  • [3] A. Takayama, A.M. Ito, S. Saito, N. Ohno and H. Nakamura, Jpn. J. Appl. Phys. 52, 01AL03 (2013).
  • [4] C.S. Becquart and C. Domain, Phys. Rev. Lett. 97, 97196402 (2006).
  • [5] T. Tamura, R. Kobayashi, S. Ogata and A.M. Ito, Model. Simul. Mater. Sci. Eng. 22, 015002 (2014).
  • [6] P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
  • [7] W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965).
  • [8] D. Kato, H. Iwakiri and K. Morishita, J. Nucl. Mater. 417, 1115 (2011).
  • [9] G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).
  • [10] OpenMX web-site:http://www.openmx-square.org/
  • [11] J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  • [12] T. Ozaki, Phys. Rev. B 67, 155108 (2003).
  • [13] T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
  • [14] I. Morrison, D.M. Bylander and L. Kleinman, Phys. Rev. B 47, 6728 (1993).
  • [15] T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).
  • [16] T. Ahlgren, K. Heinola, N. Juslin and A. Kuronen, J. Appl. Phys. 107, 033516 (2010).
  • [17] C.S. Becquart and C. Domain, Nucl. Instrum. Methods Phys. Res. B 255, 23 (2007).
  • [18] R.A. Johnson and W.D. Wilson, in: P.C. Gehlen, J.R. Beeler, R.I. Jaffee (Eds.), Interatomic Potentials and Simulation of Lattice Defects (Plenum, New York, 1972) p.301.
  • [19] W.D. Wilson and C.L. Bisson, Rad. Eff. 22, 63 (1974).
  • [20] K. Masuda, J. Phys. 43, 921 (1982).
  • [21] R.A. Johnson, Phys. Rev. B 27, 2014 (1983).
  • [22] A. van Veen, Mater. Sci. Forum 3, 15 (1987).
  • [23] K.C. Mundim, L.A. Malbouisson, S. Dorfman, D. Fuks, J. Van Humbeek and V. Liubich, J. Mol. Struct. (Theochem.) 539, 191 (2001).
  • [24] W. Hu, W. Shu and B. Zhang, Comput. Mater. Sci. 23, 175 (2002).

This paper may be cited as follows:

Yasuhiro ODA, Atsushi M. ITO, Arimichi TAKAYAMA and Hiroaki NAKAMURA, Plasma Fusion Res. 9, 3401117 (2014).