[Table of Contents]

Plasma and Fusion Research

Volume 9, 1405143 (2014)

Regular Articles


Structural Optimization of the Blanket First Wall to Reduce Thermal Stress Using the Taguchi Method
Wenhai GUAN, Makoto FUKUDA, Shuhei NOGAMI, Akira HASEGAWA, Hisashi TANIGAWA1), Takanori HIROSE1), Hiroyasu TANIGAWA2) and Hitoshi TAMURA3)
Department of Quantum Science and Energy Engineering, Tohoku University, Sendai 980-8579, Japan
1)
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
2)
Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212, Japan
3)
National Institute for Fusion Science, Toki 509-5292, Japan
(Received 28 January 2014 / Accepted 17 September 2014 / Published 31 October 2014)

Abstract

The first wall of a fusion reactor blanket faces the core plasma directly. The first wall endures high heat loads that lead to high thermal stresses. To ensure the reliability of the first wall structure, it is desirable to reduce the thermal stress. In this study, structural optimization of the blanket first wall was carried out using the Taguchi method. The finite element method was used to conduct a numerical simulation to investigate the thermo-mechanical responses of the blanket first wall. The optimal configuration of the blanket first wall was derived.


Keywords

blanket first wall, thermal stress, Taguchi method, structural optimization

DOI: 10.1585/pfr.9.1405143


References

  • [1] T. Nishitani, H. Tanigawa et al., Fusion Eng. Des. 386-388, 405 (2009).
  • [2] S. Nishio et al., Fusion Eng. Des. 81, 1271 (2006).
  • [3] Y. Nomoto, S. Suzuki, K. Ezato, T. Hirose, D. Tsuru, H. Tanigawa, T. Hatano, M. Enoeda and M. Akiba, Fusion Eng. Des. 81, 719 (2006).
  • [4] H. Tanigawa, 5.1 blanket and thermal conversion system, J. Plasma Fusion Res. 87 Supplement, 132 (2011).
  • [5] Z.-Y. Wu, H.-W. Wu and C.-H. Hung, Fuel 117, 8 (2014).
  • [6] R. Sreenivasulu, Procedia Engineering 64, 785 (2013).
  • [7] G. Ambrogioa, F. Gagliardia and L. Filice, Procedia CIRP 12, 270 (2013).
  • [8] G. Taguchi, Functionality Evaluation for Robust Design — For the Efficient Technology Development (Japanese Standards Association, Tokyo, 2000).
  • [9] M. Tamura, H. Hayakawa, H. Tanimura, A. Hishinuma and T. Kondo, J. Nucl. Mater. 141-143, 1067 (1986).
  • [10] H. Tanigawa, K. Shiba, H. Sakasegawa, T. Hirose and S. Jitsukawa, Fusion Eng. Des. 86, 2549 (2011).
  • [11] S. Suzuki et al., J. Plasma Fusion Res. 82, 768 (2006).
  • [12] M. Enoeda, M. Akiba, S. Tanaka, A. Shimizu, A. Hasegawa, S. Konishi, A. Kimura, A. Kohyama, A. Sagara and T. Muroga, Fusion Eng. Des. 81, 415 (2006).
  • [13] Y. Watanabe, Hajimete no parameta sekkei (Union of Japanese Scientists and Engineers, Tokyo, 2013) p.68-69 (in Japanese).
  • [14] H. Yano, Hinshitsu kougaku keisan hou nyumon (Japanese Standards Association, Tokyo, 1998) p.51 (in Japanese).
  • [15] S. Yamada, Jikken keikaku hou -houhou hen- (Union of Japanese Scientists and Engineers, Tokyo, 2004) p.87-91 (in Japanese).
  • [16] H. Morita, Saishin jikken keikaku hou no kihon to shikumi (Shuwa System, Tokyo, 2010) p.152-153 (in Japanese).
  • [17] G. Taguchi, Jikken keikaku hou (jou) (Maruzen, Tokyo, 1962) p.78-79 (in Japanese).
  • [18] K. Tatebayashi, Nyuumon taguchi mesoddo (Union of Japanese Scientists and Engineers, Tokyo, 2004) p.33 (in Japanese).
  • [19] C.F. Lucks and H.W. Deem, ASTM STP 227, 20 (1958).
  • [20] M. Grujicic and H. Zhao, Mater. Sci. Eng. A252, 117 (1998).

This paper may be cited as follows:

Wenhai GUAN, Makoto FUKUDA, Shuhei NOGAMI, Akira HASEGAWA, Hisashi TANIGAWA, Takanori HIROSE, Hiroyasu TANIGAWA and Hitoshi TAMURA, Plasma Fusion Res. 9, 1405143 (2014).