[Table of Contents]

Plasma and Fusion Research

Volume 9, 1405139 (2014)

Regular Articles


Key Aspects of the Safety Study of a Water-Cooled Fusion DEMO Reactor
Makoto NAKAMURA, Kenji TOBITA, Youji SOMEYA, Hisashi TANIGAWA1), Werner GULDEN2), Yoshiteru SAKAMOTO, Takao ARAKI3), Kazuhito WATANABE3), Hisato MATSUMIYA3), Kyoko ISHII3), Hiroyasu UTOH, Haruhiko TAKASE5), Takumi HAYASHI1), Akira SATOU4), Taisuke YONOMOTO4), Gianfranco FEDERICI2) and Kunihiko OKANO6)
Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212, Japan
1)
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
2)
Fusion for Energy, c/o EFDA Garching and Max-Plank-Institut fuer Plasmaphysik, Garching D-85748, Germany
3)
Toshiba Corporation, Yokohama, Kanagawa 235-8523, Japan
4)
Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
5)
IFERC Project Team, Rokkasho, Aomori 039-3212, Japan
6)
The Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan
(Received 4 August 2014 / Accepted 31 August 2014 / Published 31 October 2014)

Abstract

Key aspects of the safety study of a water-cooled fusion DEMO reactor is reported. Safety requirements, dose target, DEMO plant model and confinement strategy of the safety study are briefly introduced. The internal hazard of a water-cooled DEMO, i.e. identification of hazardous inventories, identification of stored energies that can mobilize these hazardous inventories and identification of accident initiators and scenarios, are evaluated. It is pointed out that the enthalpy in the first wall/blanket cooling loops, the decay heat and the energy potentially released by the Be-steam chemical reaction are of special concern for the water-cooled DEMO. An ex-vessel loss-of-coolant accident (ex-VV LOCA) of the first wall/blanket cooling loop is also quantitatively analyzed. The integrity of the building against the ex-VV LOCA is discussed.


Keywords

water-cooled fusion DEMO, safety study, hazard analysis, accident scenario analysis, safety system

DOI: 10.1585/pfr.9.1405139


References

  • [1] R.W. Conn, J.P. Holdren, S. Sharafat, D. Steiner, D.A. Ehst, W.J. Hogan, R.A. Krakowski, R.L. Miller, F. Najmabadi and K.R. Schultz, Nucl. Fusion 30, 1919 (1990).
  • [2] J. Raeder, I. Cook, F.H. Morgenstern, E. Salpietro, R. Bünde and E. Ebert, Safety and environmental assessment of fusion power (SEAFP), EURFUBRU XII-217/95 (1995).
  • [3] I. Cook, G. Marbach, L. Di Pace, C. Girard and N.P. Taylor, Safety and Environmental Impact of Fusion, EUR (01) CCE-FU / FTC 8/5 (2001).
  • [4] ITER Generic Site Safety Report (GSSR) as summarized in “ITER Technical Basis”, ITER EDA Documentation Series No. 24, IAEA, Vienna (2002).
  • [5] N. Taylor, D. Baker, S. Ciattaglia, P. Cortes, J. Elbez-Uzan, M. Iseli, S. Reyes, L. Rodriguez-Rodrigo, S. Rosanvallon and L. Topilski, Fusion Eng. Des. 86, 619 (2011).
  • [6] D. Maisonnier et al., Final Report of the European Power Plant Conceptual Study, EFDA-RP-RE-5.0 (2004).
  • [7] W. Gulden, S. Ciattaglia, V. Massaut and P. Sardain, Nucl. Fusion 47, S415 (2007).
  • [8] D.A. Petti, B.J. Merrill, R.L. Moore, G.R. Longhurst, L. El-Guebaly, E. Mogahed, D. Henderson, P. Wilson and A. Abdou, Fusion Eng. Des. 80, 111 (2006).
  • [9] K. Tobita, G. Federici and K. Okano, the BA DEMO Design Activity Unit, Research and development status on fusion DEMO reactor design under the Broader Approach, Fusion Eng. Des. in press (2014).
  • [10] K. Okano, G. Federici and K. Tobita, DEMO design activities in the Broader Approach under Japan/EU collaboration, Fusion Eng. Des. in press (2014).
  • [11] M. Nakamura et al., Study of safety features and accident scenarios in a fusion DEMO reactor, Fusion Eng. Des. in press (2014).
  • [12] http://www.jaea.go.jp/04/monju/EnglishSite/ contents02-1.html
  • [13] M. Enoeda et al., Fusion Eng. Des. 87, 1363 (2012).
  • [14] T. Nishitani et al., Fusion Eng. Des. 87, 535 (2012).
  • [15] K. Tsuchiya et al., Nucl. Fusion 47, 1300 (2007).
  • [16] Y. Sakamoto, M. Nakamura, K. Tobita, H. Utoh, Y. Someya, K. Hoshino, N. Asakura and S. Tokunaga, Relationship between net electric power and radial build of DEMO based on ITER steady-state scenario parameters, Fusion Eng. Des. in press (2014).
  • [17] H. Fujieda, Y. Murakami and M. Sugihara, Tokamak plasma power balance calculation code (TPC Code) outline and operation manual, JAERI-M 92-178 (1992) [in Japanese].
  • [18] M. Nakamura, R. Kemp, H. Utoh, D.J. Ward, K. Tobita, R. Hiwatari and G. Federici, Fusion Eng. Des. 87, 864 (2012).
  • [19] H. Utoh, T. Isono, M. Hasegawa, K. Tobita and N. Asakura, J. Plasma Fusion Res. SERIES 9, 304 (2010).
  • [20] K. Tobita et al., Nucl. Fusion 47, 892 (2007).
  • [21] R. Hiwatari, K. Okano, Y. Asaoka, K. Shinya and Y. Ogawa, Nucl. Fusion 45, 96 (2005).
  • [22] Ministry of Education, Culture, Sports, Science and Technology Japan (MEXT), On safety assurance of ITER (2003) [in Japanese].
  • [23] IAEA Safety Standards, Radiation protection and safety of radiation sources: international basic safety standards, Interim Ed., IAEA Safety Standard Series, No. GSR Pt. 3 (Interim) (2011).
  • [24] Y. Someya and K. Tobita, Plasma Fusion Res. 7, 2405066 (2012).
  • [25] X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Vol. II: Users Guide, La-CP-03-0245, LANL, 2003.
  • [26] Y. Seki, H. Iida, H. Kawasaki and K. Yamada, JAERI 1301 (1986).
  • [27] K. Tobita et al., Conceptual Design of the SlimCS Fusion DEMO Reactor, JAEA-Research 2010-019 (2010) [in Japanese].
  • [28] R.A. Anderl, K.A. McCarthy, M.A. Oates, D.A. Petti, R.J. Pawelko and G.R. Smolik, J. Nucl. Mater. 258-263, 750 (1998).
  • [29] K. Tobita et al., J. Nucl. Mater. 386-388, 888 (2009).
  • [30] L. Topilski, Safety Analysis Data List 2008 Version 1.3, ITER D 24LSAEH97G v. 1.3 (2009).
  • [31] R. Villari et al., Fusion Eng. Des. 88, 2006 (2013).
  • [32] D. Tsuru, Y. Neyatani, T. Araki, K. Nomoto, S. O'Hira, T. Maruo, M. Hashimoto, K. Hada and E. Tada, Fusion Eng. Des. 58-59, 985 (2001).
  • [33] H. Tanigawa, private communication (2013).
  • [34] T. Hirose, T. Nozawa, R.E. Stoller, D. Hamaguchi, H. Sakasegawa, H. Tanigawa, H. Tanigawa, M. Enoeda, Y. Katoh and L.L. Snead, Physical properties of F82H for fusion blanket design, Fusion Eng. Des. in press (2014).
  • [35] ITER Materials Properties Handbook, Austenitic steel 316L(N)-IG, ITER Document No. G 74 MA 16 04-02-04 W 0.1 (2004); revised version (2008).
  • [36] E. Mas de les Valls, L.A. Sedano, L. Batet, I. Ricapito, A. Aiello, O. Gastaldi and F. Gabriel, J. Nucl. Mater. 353-357, 376 (2008).
  • [37] http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/li2o.html
  • [38] T. Kurasawa et al., Fusion Eng. Des. 27, 449 (1995).
  • [39] Y. Someya et al., A feasible DEMO blanket concept based on water cooled solid breeder, Proc. 24th Fusion Energy Conf., FTP/P7-33, San Diego, USA, Oct. 2012.
  • [40] M. Nakamichi and J.H. Kim, private communication (2014).
  • [41] K. Munakata, H. Kawamura and M. Uchida, J. Nucl. Mater. 329-333, 1357 (2004).
  • [42] Nuclear Safety Research Association, Consideration of proposals for principles of safety design and assessment for ITER, NSRA Rep. I840 (2004) [in Japanese].
  • [43] N. Taylor et al., Fusion Sci. Technol. 56, 573 (2009).
  • [44] R.M. Summers, R.K. Cole, Jr., E.A. Boucheron, M.K. Carmel, S.E. Dingman and J.E. Kelly, MELCOR 1.8.0: A Computer Code for Nuclear Reactor Severe Accident Source Term and Risk Assessment Analyses, NUREG/CR-5531 and SAND90-0364, USNRC Report, Sandia National Laboratory, (1991).
  • [45] R.O. Gauntt, R.K. Cole, C.M. Erickson, R.G. Gido, R.D. Gasser, S.B. Rodriguez and M.F. Young, MELCOR Computer Code Manuals vol. 1: Primer and Users' Guide Version 1.8.5, NUREG/CR-6119, Vol. 1, Rev. 2, SAND2000-2417/1, USNRC Report, Sandia National Laboratory, (2000).
  • [46] B.J. Merrill, R.L. Moore, S.T. Polkinghorne and D.A. Petti, Fusion Eng. Des. 51-52, 555 (2000).
  • [47] B.J. Merrill, P.W. Humrickhouse and R.L. Moore, Fusion Eng. Des. 85, 1479 (2010).
  • [48] B.J. Merrill, L.A. El-Guebaly, C. Martin, R.L. Moore, A.R. Raffray, D.A. Petti and ARIES-CS Team, Fusion Sci. Technol. 54, 838 (2007).

This paper may be cited as follows:

Makoto NAKAMURA, Kenji TOBITA, Youji SOMEYA, Hisashi TANIGAWA, Werner GULDEN, Yoshiteru SAKAMOTO, Takao ARAKI, Kazuhito WATANABE, Hisato MATSUMIYA, Kyoko ISHII, Hiroyasu UTOH, Haruhiko TAKASE, Takumi HAYASHI, Akira SATOU, Taisuke YONOMOTO, Gianfranco FEDERICI and Kunihiko OKANO, Plasma Fusion Res. 9, 1405139 (2014).