[Table of Contents]

Plasma and Fusion Research

Volume 9, 1401092 (2014)

Regular Articles


Influence of a Guide Field on Collisionless Driven Reconnection
Ritoku HORIUCHI1,2), Shunsuke USAMI1) and Hiroaki OHTANI1,2)
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
The Graduate University for Advanced Studies, Toki 509-5292, Japan
(Received 24 January 2014 / Accepted 19 April 2014 / Published 4 July 2014)

Abstract

The influence of a guide field on collisionless driven reconnection is investigated by means of two-dimensional electromagnetic particle simulation in an open system. In a quasi-steady state when reconnection electric field evolves fully, a current layer evolves locally in a narrow kinetic region and its scale decreases in proportion to an electron meandering scale as the guide field is intensified. Here, the meandering scale stands for an average spatial scale of nongyrotropic motions in the vicinity of the reconnection point. Force terms associated with off-diagonal components of electron and ion pressure tensors, which are originating from nongyrotropic motions of charged particles, becomes dominant at the reconnection point and sustain the reconnection electric field even when the guide field is strong. It is also found that thermalization of both ions and electrons is suppressed by the guide field. For the weak guide field, an electron nonthermal component is significantly created through a fast outburst from the kinetic region, while for the strong guide field, an ion nonthermal component is generated through the acceleration by an in-plane electric field near the magnetic separatrix.


Keywords

guide field, collisionless driven reconnection, meandering effect, energy conversion process

DOI: 10.1585/pfr.9.1401092


References

  • [1] M. Yamada, Rev. Mod. Phys. 82, 603 (2010).
  • [2] N.A. Krall and P.C. Liewer, Phys. Rev. 4, 2094 (1971).
  • [3] Z. Zhu and R.M. Winglee, J. Geophys. Res. 101, 4885 (1996).
  • [4] R. Horiuchi and T. Sato, Phys. Plasmas 6, 4565 (1999).
  • [5] W. Daughton, Phys. Plasmas 6, 1329 (1999).
  • [6] W. Daughton, G. Lapenta and P. Ricci, Phys. Rev. Lett. 93, 105004 (2004).
  • [7] T. Moritaka, R. Horiuchi and H. Ohtani, Phys. Plasmas 14, 102109 (2007).
  • [8] T. Moritaka and R. Horiuchi, Phys. Plasmas 15, 092114 (2008).
  • [9] R. Horiuchi and T. Sato, Phys. Plasmas 1, 3587 (1994).
  • [10] M. Hesse, K. Schindler, J. Birn and M. Kuznetsova, Phys. Plasmas 6, 1781 (1999).
  • [11] W. Pei, R. Horiuchi and T. Sato, Phys. Plasmas 8, 3251 (2001).
  • [12] W. Pei, R. Horiuchi and T. Sato, Phys. Rev. Lett. 87, 235003 (2001).
  • [13] R. Horiuchi and H. Ohtani, Comm. Comp. Phys. 4, 496 (2008).
  • [14] R. Horiuchi and T. Sato, Phys. Plasmas 4, 277 (1997).
  • [15] M. Hesse, M. Kuznetsova, K. Schindler and J. Birn, Phys. Plasmas 12, 100704 (2005).
  • [16] M. Hesse, Phys. Plasmas 13, 122107 (2006).
  • [17] P. Pritchett, Phys. Plasmas 12, 062301 (2005).
  • [18] H. Ohtani and R. Horiuchi, Plasma Fusion Res. 4, 024 (2009).
  • [19] A. Ishizawa and R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).
  • [20] R. Horiuchi, S. Usami, H. Ohtani and T. Moritaka, Plasma Fusion Res. 5, S2006 (2010).
  • [21] S. Inoue, Y. Ono, R. Horiuchi, H. Ohtani, S. Usami, Y. Kaminou and K. Yamasaki, Proc. 24th IAEA-FEC (2014), to be published.

This paper may be cited as follows:

Ritoku HORIUCHI, Shunsuke USAMI and Hiroaki OHTANI, Plasma Fusion Res. 9, 1401092 (2014).