[Table of Contents]

Plasma and Fusion Research

Volume 9, 1401056 (2014)

Regular Articles


Validation of Spectroscopic Model for Fe Ions in Non-Equilibrium Ionization Plasma in LHD and Hinode
Izumi MURAKAMI1,2), Tetsuya WATANABE3,4), Chihiro SUZUKI1), Shigeru MORITA1,2), Chunfeng DONG1), Naoki TAMURA1), Norimasa YAMAMOTO5), Daiji KATO1,2), Hiroyuki A. SAKAUE1), Hirohisa HARA3,4), Nobuyuki NAKAMURA6) and Shigeru SUDO1,2)
1)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
2)
Department of Fusion Science, The Graduate University of Advanced Studies (SOKENDAI), Toki, Gifu 509-5292, Japan
3)
National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
4)
Department of Astronomical Science, The Graduate University of Advanced Studies (SOKENDAI), Mitaka, Tokyo 181-8588, Japan
5)
Center of Applied Superconductivity and Sustainable Energy Research, Chubu University, Kasugai, Aichi 487-8501, Japan
6)
Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
(Received 25 September 2013 / Accepted 16 February 2014 / Published 10 June 2014)

Abstract

We measured extreme ultraviolet spectra of Fe ions for plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science (NIFS). Iron was injected into the plasmas by using a tracer-encapsulated pellet. By controlling the neutral beam injection pattern, we could produce plasma with a central electron temperature of approximately 500 eV, which was suitable for producing Fe XVII ions. We measured seven Fe XVII lines. The intensity ratio for λ of 20.468 to 25.493 nm was consistent with the theoretically calculated value of 1.1. This calculated value was determined purely from the branching ratio due to the common upper level of these transitions, although Warren et al. [Astrphys. J. 685, 1277 (2008)] reported a larger ratio of approxinately 2 from Hinode EIS measurements. The other five ratios for Fe XVII lines in our LHD measurements were also consistent with the theoretical ratios calculated with a collisional-radiative model. A preferred atomic dataset for Fe XVII is suggested to obtain better agreement between the measured and calculated ratios.


Keywords

Fe XVII spectral lines, spectroscopic diagnostics, EUV spectrum, solar plasma, fusion plasma

DOI: 10.1585/pfr.9.1401056


References

  • [1] T. Kosugi et al., Solar Phys. 243, 3 (2007).
  • [2] J.L. Culhane et al., Solar Phys. 243, 19 (2007).
  • [3] J.A. Klimchuk, Solar Phys. 234, 41 (2006).
  • [4] A.K. Dupree et al. Astrophys. J. 299, L101 (1979).
  • [5] T. Kato et al., Astrophys. J. 492, 822 (1998).
  • [6] S. Imada et al., Astrophys. J. 742, 70 (2011).
  • [7] G.A. Doschek et al., Astrophys. J. 667, L109 (2007).
  • [8] S. Imada et al., Astrophys. J. 705, L208 (2009).
  • [9] N. Yamamoto et al., Astrophys. J. 689, 646 (2008).
  • [10] N. Yamamoto et al., J. Phys.: Conf. Ser. 163, 012023 (2009).
  • [11] T. Watanabe et al., Astrophys. J. 692, 1294 (2009).
  • [12] I. Murakami et al., Plasma Fusion Res. 5, S2021 (2010).
  • [13] H.A. Sakaue et al., J. Appl. Phys. 109, 073304 (2011).
  • [14] N. Nakamura et al., Astrophys. J. 739, 17 (2011).
  • [15] I. Skobelev et al., Astron. Astrophys. 511, A60 (2010).
  • [16] I. Murakami et al., accepted to IAEA Atomic and Plasma-Material Interaction Data for Fusion (2013).
  • [17] S. Sudo et al, Plasma Phys. Control. Fusion 44, 129 (2002).
  • [18] S. Sudo and N. Tamura, Rev. Sci. Instrum. 83, 023503 (2012).
  • [19] N. Nakamura et al., Rev. Sci. Instrum. 79, 063104 (2008).
  • [20] H.A. Sakaue et al., J. Instrumentation 5, C08010 (2010).
  • [21] H.P. Warren et al., Astrphys. J. 685, 1277 (2008).
  • [22] T. Watanabe et al., 38th COSPER-GA, E25-008-10 (oral presentation) (2010).
  • [23] G.A. Doscheck et al., Phys. Rev. A 43, 2565 (1991).
  • [24] G. Del Zanna and Y. Ishikawa, Astron. Astrophys. 508, 1517 (2009).
  • [25] P. Jönsson et al., Compt. Phys. Commun. 177, 597 (2007).
  • [26] P. Jönsson et al., Research Report of the National Institute for Fusion Science, NIFS-DATA-113 (2011); Atomic Data Nucl. Data Tables 100, 1 (2014).
  • [27] A. Bar-Shalon et al., J. Quant. Spect. Rad. Transf. 71, 179 (2001).
  • [28] H.P. Summers, The ADAS User Manual, version 2.6, http://www.adas.ac.uk (2004).
  • [29] K.P. Dere et al., Astron. Astrophys. 498, 915 (2009).
  • [30] S.D. Loch et al., J. Phys. B 39, 1 (2006).
  • [31] G.Y. Liang and N.R. Badnell, Astron. Astrophys. 518, A64 (2010).
  • [32] M.B. Chowduri et al., Rev. Sci. Instrum. 78, 023501 (2007).
  • [33] C. Dong et al., Rev. Sci. Instrum. 82, 113102 (2011).
  • [34] A. Kramida et al., URL=http://www.nist.gov/apml/data/asd.cfm
  • [35] T. Watanabe et al., Plasma Fusion Res. 8, 2501105 (2013).
  • [36] T. Watanabe et al., in preparation (2014).
  • [37] G. Del Zanna, Astron. Astrophys. 555, A47 (2013).

This paper may be cited as follows:

Izumi MURAKAMI, Tetsuya WATANABE, Chihiro SUZUKI, Shigeru MORITA, Chunfeng DONG, Naoki TAMURA, Norimasa YAMAMOTO, Daiji KATO, Hiroyuki A. SAKAUE, Hirohisa HARA, Nobuyuki NAKAMURA and Shigeru SUDO, Plasma Fusion Res. 9, 1401056 (2014).