[Table of Contents]

Plasma and Fusion Research

Volume 8, 3405046 (2013)

Regular Articles


Degradation of the Transmissive Optics for a Laser-Driven IFE Power Plant under Electron and X-Ray Irradiation
Vladimir D. ZVORYKIN, Andrei S. ALIMOV1), Sergei V. ARLANTSEV2), Boris S. ISHKHANOV1), Alexei O. LEVCHENKO, Nikolai N. MOGILENETZ3), Victor F. ORESHKIN, Andrei P. SERGEEV, Pavel B. SERGEEV, Victor F. SHTAN'KO4), Vasilii I. SHVEDUNOV1) and Nikolai N. USTINOVSKII
P.N. Lebedev Physical Institute of RAS, Leninsky Prospect 53, Moscow, 119991, Russia
1)
D.V. Skobel'tsyn Institute of Nuclear Physics, Moscow State University,Vorob'evy gory 1, Moscow, 119992, Russia
2)
V.K. Orlov OKB “Granat”, Volokolamskoe Shosse 95, Moscow, 125424, Russia
3)
National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, Moscow, 115409, Russia
4)
Tomsk Polytechnic University, Tomsk, Prospect Lenina 30, 634050, Russia
(Received 1 June 2012 / Accepted 31 July 2012 / Published 22 May 2013)

Abstract

Several facilities are used to test trasmissive optics of the IFE target chamber and KrF laser driver in regard of transient and residual radiation-induced absorption in the range of 150-1200 nm. Comparative study of radiation darkening of various fused silica glasses, high-purity CaF2, MgF2, and Al2O3 crystals under irradiation by 300-keV electrons, soft (hν = 6-20 keV) and hard (hν ∼ 400 keV) X-rays is done and better radiation-proof optical materials are selected; the opposite effect of optics bleaching under UV laser light is observed.


Keywords

darkening of fused silica glasses and UV crystals under irradiation by fast electrons, soft and hard X-rays

DOI: 10.1585/pfr.8.3405046


References

  • [1] I.N. Sviatoslavsky, M.E. Sawan, R.R. Peterson et al., Fusion Technol. 21, 1470 (1992).
  • [2] T.C. Sangster, R.L. McCrory, V.N. Goncharov et al., Nucl. Fusion 47, S686 (2007).
  • [3] J.F. Latkowski, A. Kubota, M.J. Caturla et al., Fusion Sci. Technol. 43, 540 (2003).
  • [4] R.L. Bieri and M.W. Guinan, Fusion Technol. 19, 673 (1991).
  • [5] R.W. Moir, Fusion Eng. Des. 51-2, 1121 (2000).
  • [6] J.D. Sethian, M. Friedman, R.H. Lehmberg et al., Nucl. Fusion 43, 1693 (2003).
  • [7] V.D. Zvorykin, S.V. Arlantsev, V.G. Bakaev et al., Inertial Fusion Sciences and Appl. 2003, (B.A. Hammel, D.D. Meyerhoffer, J. Meyer-ter-Vehn and H. Azechi Eds., American Nuclear Society, Inc., 2004) p.548.
  • [8] C.D. Marshall, J.A. Speth and S.A. Payne, J. Non-Cryst. Solids 212, 59 (1997).
  • [9] J.F. Latkowski, A. Kubota, M.J. Caturla et al., Fusion Sci. Technol. 43, 540 (2003).
  • [10] B.A. Levin, D.V. Orlinski, K.Yu. Vukulov et al., Problems of Atomic Science and Technology, Series: Physics of Radiation Effect and Radiation Materials Science, No.3, p.51 (2003).
  • [11] V.D. Zvorykin, N.V. Didenko, A.A. Ionin et al., Laser Part. Beams 25, 435 (2007).
  • [12] S.P. Obenschain, J.D. Sethian and A.J. Schmitt, Fusion Sci. Technol. 56, 594 (2009).
  • [13] V.D. Zvorykin, S.V. Arlantsev, V.G. Bakaev et al., Laser Part. Beams 17, 609 (2001).
  • [14] A.O. Levchenko, V.D. Zvorykin, S.V. Likhomanova et al., Quantum Electron. 40, 203 (2010).
  • [15] P.B. Sergeev, A.P. Sergeev and V.D. Zvorykin, Quantum Electron. 37, 706 (2007).
  • [16] P.B. Sergeev, A.P. Sergeev and V.D. Zvorykin, Quantum Electron. 37, 711 (2007).
  • [17] A.P. Sergeev and P.B. Sergeev, J. Opt. Technol. 78, 341 (2011).
  • [18] A.S. Alimov, B.S. Ishkhanov et al., Moscow Univ. Phys. Bull. 65, 111 (2010).
  • [19] V.D. Zvorykin, S.V. Arlantsev et al., J. Phys: Conference Series 112, 032055 (2008).

This paper may be cited as follows:

Vladimir D. ZVORYKIN, Andrei S. ALIMOV, Sergei V. ARLANTSEV, Boris S. ISHKHANOV, Alexei O. LEVCHENKO, Nikolai N. MOGILENETZ, Victor F. ORESHKIN, Andrei P. SERGEEV, Pavel B. SERGEEV, Victor F. SHTAN'KO, Vasilii I. SHVEDUNOV and Nikolai N. USTINOVSKII, Plasma Fusion Res. 8, 3405046 (2013).