[Table of Contents]

Plasma and Fusion Research

Volume 8, 3404048 (2013)

Regular Articles


Wobbling Heavy Ion Beam Illumination in Heavy Ion Inertial Fusion
Shigeo KAWATA, Tatsuya KUROSAKI, Shunsuke KOSEKI, Kenta NOGUCHI, Daisuke BARADA, Alexander Ivanov OGOYSKI1), John J. BARNARD2) and B. Grant LOGAN2)
Department of Advanced Interdisciplinary Sciences, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585, Japan
1)
Department of Physics, Varna Technical University, Varna 9010, Bulgaria
2)
Lawrence Berkeley National Laboratory and Virtual National Laboratory for Heavy Ion Fusion, Berkeley, California 94720, U.S.A.
(Received 14 May 2012 / Accepted 2 July 2012 / Published 22 May 2013)

Abstract

A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs' illumination nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ∼ 1 GHz. Three-dimensional HIBs illumination computations presented here show that the few % wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.


Keywords

heavy ion inertial fusion, wobbling heavy ion beam, heavy ion beam illumination uniformity, instability dynamic mitigation, uniform target implosion, direct drive target

DOI: 10.1585/pfr.8.3404048


References

  • [1] M.H. Emery, J.H. Orens, J.H. Gardner and J.P. Boris, Phys. Rev. Lett. 48, 253 (1982).
  • [2] S. Kawata and K. Niu, J. Phy. Soc. Jpn. 53, 3416 (1984).
  • [3] F. Troyon and R. Gruber, Phys. Fluids 14, 2069 (1971).
  • [4] J.P. Boris, Comments Plasma Phys. Control. Fusion 3, 1 (1977).
  • [5] R. Betti, R.L. McCrory and C.P. Verdon, Phys. Rev. Lett. 71, 19 (1993).
  • [6] H. Qin, R.C. Davidson and B.G. Logan, Phys. Rev. Lett. 104, 254801 (2010).
  • [7] M.M. Basko, T. Schlegel and J. Maruhn, Phys. Plasmas 11, 1577 (2004).
  • [8] S. Kawata, T. Sato, T. Teramoto, E. Bandoh, Y. Masubuchi, H. Watanabe and I. Takahashi, Laser Part. Beams 11, 757 (1993).
  • [9] S. Kawata, Y. Iizuka, Y. Kodera, A.I. Ogoyski, and T. Kikuchi, Nucl. Instrum. Methods Phys. Res. A606, 152 (2009).
  • [10] S. Miyazawa, A.I. Ogoyski, S. Kawata, T. Someya and T. Kikuchi, Phys. Plasmas 12, 122702 (2005).
  • [11] J. Runge and B.G. Logan, Phys. Plasmas 16, 133109 (2009).
  • [12] A.I. Ogoyski, S. Kawata and P.H. Popov, Comput. Phys. Commum. 181, 1332 (2010) and references therein.
  • [13] S. Skupsky and K. Lee, J. Appl. Phys. 54, 3662 (1983).
  • [14] T.A. Mehlhorn, J. Appl. Phys. 52, 6522 (1981).
  • [15] S. Kawata, Phys. Plasmas 19, 024503 (2012).

This paper may be cited as follows:

Shigeo KAWATA, Tatsuya KUROSAKI, Shunsuke KOSEKI, Kenta NOGUCHI, Daisuke BARADA, Alexander Ivanov OGOYSKI, John J. BARNARD and B. Grant LOGAN, Plasma Fusion Res. 8, 3404048 (2013).