[Table of Contents]

Plasma and Fusion Research

Volume 8, 3404044 (2013)

Regular Articles


KrF Laser Development for Fusion Energy
Matthew F. WOLFORD, John D. SETHIAN, Matthew C. MYERS, Frank HEGELER1), John L. GIULIANI and Stephen P. OBENSCHAIN
Plasma Physics Division, U.S. Naval Research Laboratory, 4555 Overlook Ave., SW Washington DC 20375, USA
1)
Commonwealth Technology, Inc. Alexandria, Virginia 22315, USA
(Received 21 May 2012 / Accepted 6 August 2012 / Published 22 May 2013)

Abstract

The United States Naval Research Laboratory is developing an electron beam pumped krypton fluoride laser technology for a direct drive inertial fusion energy power plant. The repetitively pulsed krypton fluoride laser technology being developed meets the fusion energy requirements for laser beam quality, wavelength, and repetition rate. The krypton fluoride laser technology is projected, based on experiments, to meet the requirements for wall plug efficiency and durability. The projected wall plug efficiency based on experiments is greater than 7 percent. The Electra laser using laser triggered gas switches has conducted continuous operation for 90,000 shots at 2.5 Hertz operation (ten hours). The Electra laser has achieved greater than 700 Joules per pulse at 1 and 2.5 Hertz repetition rate. The comparison of krypton fluoride laser performance with krypton fluoride kinetics code shows good agreement for pulse shape and laser yield. Development and operation of a durable pulse power system with solid state switches has achieved a continuous run of 11 million pulses into a resistive load at 10 Hz.


Keywords

KrF laser, inertial fusion energy, electron beam, pulsed power, repetitively pulsed

DOI: 10.1585/pfr.8.3404044


References

  • [1] G.L. Sutton and P. Kim, Clinical and Experimental Ophthalmology 38, 192 (2010).
  • [2] J.P. Budin, J. Boulmer and D. Debarre, Thin Solid Films 175, 109 (1989).
  • [3] S.P. Obenschain, S.E. Bodner, D. Colombant, K. Gerber, R. Lehmberg, E.A. McLean, A.N. Mostovych, M.S. Pronko, C.J. Pawley, A..J. Schmitt, J.D. Sethian, V. Serlin, J.A. Stamper, C.A. Sullivan, J.P. Dahlburg, J.H. Gardner, Y. Chan, A.V. Deniz, J. Hardgrove, T. Lehecka and M. Klapisch, Phys. Plasmas 3, 2098 (1996).
  • [4] R.H. Lehmberg, A.J. Schmitt and S.E. Bodner, J. Appl. Phys. 68, 2680 (1987).
  • [5] J.D. Sethian, S.P. Obenschain, K.A. Gerber, C.J. Pawley, V. Serlin, C.A. Sullivan, W. Webster, A.V. Deniz, T. Lehecka, M.W. McGeoch, R.A. Altes, P.A. Corcoran, I.D. Smith and O.C. Barr, Rev. Sci. Instrum. 68, 2357 (1997).
  • [6] S.P. Obenschain, J.D. Sethian and A.J. Schmitt, Fusion Technol. 56, 594 (2009).
  • [7] M.F. Wolford, M.C. Myers, J.L. Giuliani, J.D. Sethian, P.M. Burns, F. Hegeler and R. Jaynes, Proc. SPIE 6454, 645407 (2007).
  • [8] J.D. Sethian, M. Myers, I.D. Smith, V. Carboni, J. Kishi, D. Morton, J. Pearce, B. Bowen, L. Schlitt, O. Barr and W. Webster, IEEE Trans. Plasma Sci. 28, 1333 (2000).
  • [9] M.F. Wolford, M.C. Myers, J.L. Giuliani, J.D. Sethian, P.M. Burns, F. Hegeler and R. Jaynes, Optical Engineering 47, 104202 (2008).
  • [10] J.D. Sethian, M.C. Myers, J.L. Giuliani Jr., R.H. Lehmberg, P.C. Kepple, S.P. Obenschain, F. Hegeler, M.F. Wolford, R.V. Smilgys, S.B. Swanekamp, D. Weidenheimer, D. Giorgi, D. Welch, D.V. Rose and S. Searles, Proc. IEEE 92, 1043 (2004).
  • [11] I.V. Sviatoslavsky, M.E. Sawan, R.R. Peterson, G.L. Kulcinski, J.J. MacFarlane, L.J. Wittenberg, H.Y. Khater, E.A. Mogahed and S.C. Rutledge, Fusion Technol. 21, 1470 (1992).
  • [12] J.W. Bates, A.J. Schmitt, D.E. Fyfe, S.P. Obenschain and S.T. Zalesak, High Energy Density Physics 6, 128 (2010).
  • [13] F. Hegeler, M.W. McGeoch, J.D. Sethian, H.D. Sanders, S.C. Glidden and M.C. Myers, IEEE Trans. Dielectr. Electr. Insul. 18, 1205 (2011).
  • [14] F. Hegeler, D.V. Rose, M.C. Myers, J.D. Sethian, J.L. Giuliani, M.F. Wolford and M. Friedman, Phys. Plasmas 11, 5010 (2004).
  • [15] M. Friedman, M. Myers, S.B. Swanekamp, F. Hegeler and J.D. Sethian, J. Appl. Phys. 95, 2797 (2004).
  • [16] M. Friedman, Y. Chan, S. Obenschain, J.D. Sethian and S.B. Swanekamp, Appl. Phys. Lett. 83, 1539 (2003).
  • [17] M.F. Wolford, M.C. Myers, J.L. Giuliani, J.D. Sethian and F. Hegeler, Proc. SPIE 6101, 6101M (2006).
  • [18] A. Suda, H. Kumagi and M. Obara, Appl. Phys. Lett. 51, 218 (1987).
  • [19] J.K. Rice, G.C. Tisone and E.L. Patterson, IEEE J. Quantum Electron. QE-16, 1315 (1980).
  • [20] M.F. Wolford, F. Hegeler, M.C. Myers, J.L. Giuliani Jr., R.H. Lehmberg and J.D. Sethian, J. Phys. IV France 133, 697 (2006).
  • [21] J.H. Pendergrass, Fusion Technol. 11, 732 (1987).
  • [22] G.M. Petrov, J.L. Giuliani and A. Dasgupta, J. Appl. Phys. 91, 2662 (2002).
  • [23] J.L. Giuliani, G.M. Petrov and A. Dasgupta, J. Appl. Phys. 92, 1200 (2002).
  • [24] R.H. Lehmberg and J.L. Giuliani, J. Appl. Phys. 94, 31 (2003).
  • [25] J.L. Giuliani, P. Kepple, R.H. Lehmberg, M.C. Myers, J.D. Sethian, M.F. Wolford, F. Hegeler and G. Petrov, Proc. Inertial Fusion Sciences and Applications 2003 ed. B.A. Hammel et al. (LaGrange Park, IL: American Nuclear Society) (2004) p.580.
  • [26] R.H. Lehmberg, J.L. Giuliani and A.J. Schmitt, J. Appl. Phys. 106, 023103 (2009).
  • [27] www.gamlaser.com EX50INlaser
  • [28] B. Lu, S.I. Abdel-Khalik, D.L. Sadowski and K.G. Schoonover, J. Fusion Energy 30, 453 (2011).
  • [29] B. Lu, S.I. Abdel-Khalik, D.L. Sadowski and K.G. Schoonover, Fusion Eng. Des. 87, 352 (2012).
  • [30] P.M. Burns, M. Myers, J.D. Sethian, M.F. Wolford, J.L. Giuliani, R.H. Lehmberg, M. Friedman, F. Hegeler, R. Jaynes, S. Abdel-Khalik, D. Sadowski and K. Schoonover, Fusion Sci. Technol. 56, 346 (2009).

This paper may be cited as follows:

Matthew F. WOLFORD, John D. SETHIAN, Matthew C. MYERS, Frank HEGELER, John L. GIULIANI and Stephen P. OBENSCHAIN, Plasma Fusion Res. 8, 3404044 (2013).