[Table of Contents]

Plasma and Fusion Research

Volume 8, 2403080 (2013)

Regular Articles


Blob-Hole Structures as Non-Axisymmetric Equilibrium Solutions for Potential Vorticity Conserving Fluids
Yusuke KOSUGA1,2) and Patrick H. DIAMOND1,3)
1)
WCI Center for Fusion Theory, NFRI, Daejeon, Korea
2)
IAS and RIAM, Kyushu University, Fukuoka 816-8580, Japan
3)
CMTFO and CASS, UCSD, La Jolla, CA, USA
(Received 7 December 2012 / Accepted 1 May 2013 / Published 19 June 2013)

Abstract

We characterize blob-hole structures as equilibrium solutions for potential vorticity (PV) conserving systems. To demonstrate this, we consider equilibrium statistical mechanics of PV conserving fluids. We calculate partition function and free energy of the system, under the constraints that the energy and all the moments of PV are conserved. Equilibrium solutions are obtained by minimizing the free energy. As an example of analytical solutions from this approach, we consider solutions that conserve the energy and potential enstrophy. The connection of the obtained solutions to blob-hole structures is discussed.


Keywords

turbulence, equilibrium, potential vorticity, vortex solution

DOI: 10.1585/pfr.8.2403080


References

  • [1] J.A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee, G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans, R. Fonck, E. Hollmann, A. Lenard, A. Mahdavi, G. Porter, M. Tillack and G. Antar, Phys. Plasmas 8, 4826 (2001).
  • [2] J.A. Boedo, D.L. Rudakov, R.A. Moyer, G.R. McKee, R.J. Colchin, M.J. Schaffer, P.G. Stangeby, W.P. West, S.L. Allen, T.E. Evans, R.J. Fonck, E.M. Hollmann, S. Krasheninnikov, A.W. Leonard, W. Nevins, M.A. Mahdavi, G.D. Porter, G.R. Tynan, D.G. White and X. Xu, Phys. Plasmas 10, 1670 (2003).
  • [3] G.S. Xu, V. Naulin, W. Fundamenski, C. Hidalgo, J.A. Alonso, C. Silva, B. Goncalves, A.H. Nielson, J. Juul Rasmussen, S.I. Krasheninnikov, B.N. Wan, M. Stamp and JET EFDA Contributors, Nucl. Fusion 49, 092002 (2009).
  • [4] P.W. Terry, P.H. Diamond and T.S. Hahm, Phys. Fluids B 2, 2048 (1990).
  • [5] Y. Kosuga and P.H. Diamond, Phys. Plasmas 19, 072307 (2012).
  • [6] S.I. Krasheninnikov, Phys. Lett. A 283, 368 (2001).
  • [7] P. Beyer, S. Benkadda and G. Fuhr-Chaudier, Phys. Rev. Lett. 94, 105001 (2005).
  • [8] S. Sugita, M. Yagi, S.-I. Itoh and K. Itoh, J. Phys. Soc. Japan 79, 044502 (2010).
  • [9] S. Sugita, K. Itoh, S.-I Itoh, M. Yagi, G. Fuhr, P. Beyer and S. Benkadda, Plasma Phys. Control. Fusion 54, 125001 (2012).
  • [10] G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, Cambridge, 2006).
  • [11] A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).
  • [12] A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983).
  • [13] R.H. Kraichnan, J. Fluid Mech. 67, 155 (1975).
  • [14] A. Hasegawa, C.G. Maclennan and Y. Kodama, Phys. Fluids 22, 2122 (1979).
  • [15] P.H. Diamond, Ö.D. Gürcan, T.S. Hahm, K. Miki, Y. Kosuga and X. Garbet, Plasma Phys. Control. Fusion 50, 124018 (2008).
  • [16] J. Miller, Phys. Rev. Lett. 65, 2137 (1990).
  • [17] J. Miller, P.B. Weichman and M.C. Cross, Phys. Rev. A 45, 2328 (1992).
  • [18] D. Lynden-Bell, Mon. Not. R. Astr. Soc. 136, 101 (1967).
  • [19] T.H. Dupree, Phys. Fluids 26, 2460 (1983).
  • [20] L.P. Pitaevskii and E.M. Lifshitz, Physical Kinetics: Volume 10 (Course of Theoretical Physics) (Pergamon, Oxford, 1981).
  • [21] M. Kardar, Statistical Physics of Fields (Cambridge University Press, Cambridge, 2007).
  • [22] B.G. Hong, F. Romanelli and M. Ottaviani, Phys. Fluids B 3, 615 (1991).
  • [23] C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E. Waltz, L. Schmitz and G.R. Tynan, Phys. Plasmas 16, 052301 (2009).
  • [24] Y. Kosuga, P.H. Diamond, L. Wang, Ö.D. Gürcan and T.S. Hahm, Nucl. Fusion 53, 043008 (2013).

This paper may be cited as follows:

Yusuke KOSUGA and Patrick H. DIAMOND, Plasma Fusion Res. 8, 2403080 (2013).