[Table of Contents]

Plasma and Fusion Research

Volume 8, 2403070 (2013)

Regular Articles


Evaluation of Spatial Variation of Nonlinear Energy Transfer by Use of Turbulence Diagnostic Simulator
Naohiro KASUYA, Satoru SUGITA1), Makoto SASAKI, Shigeru INAGAKI, Masatoshi YAGI2), Kimitaka ITOH1) and Sanae-I. ITOH
Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
1)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
2)
Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori 039-3212, Japan
(Received 6 December 2012 / Accepted 28 March 2013 / Published 19 June 2013)

Abstract

Turbulence Diagnostic Simulator is an assembly of simulation codes to clarify the formation mechanism of turbulent structures by numerical diagnostics in magnetically confined plasmas. Global simulations are carried out using a reduced MHD model of drift-interchange mode in helical plasmas, and time series data of 3-D fluctuation fields are produced. It includes localized modes in their rational surfaces, and broad modes spread in the radial direction. Magnitudes of nonlinear couplings from the convective derivative are evaluated in the nonlinear saturated states. The radial profile shows that there exist strong mode excitation near the center, various modes and nonlinear couplings with higher m modes in the middle radius, small number of propagating modes near the edge, which contribute to the pressure profile modification. For the detection of the different features, combination of several diagnostics is necessary.


Keywords

turbulence simulation, structural formation, fluctuation, nonlinear coupling, drift-interchange mode, radial profile, non-local transport

DOI: 10.1585/pfr.8.2403070


References

  • [1] See reviews, e.g. P.H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005).
  • [2] See reviews, e.g. A. Fujisawa, Nucl. Fusion 49, 013001 (2009).
  • [3] N. Kasuya et al., Plasma Sci. Technol. 13, 326 (2011).
  • [4] C. Holland et al., Phys. Plasmas 16, 052301 (2009).
  • [5] L. Lin et al., Phys. Plasmas 16, 012502 (2009).
  • [6] N. Kasuya et al., Proc. 23rd IAEA Fusion Energy Conference, Daejeon, Korea (2010) THC/P4-15.
  • [7] T. Yamada et al., Nature Phys. 4, 721 (2008).
  • [8] N. Kasuya, M. Yagi, S.-I. Itoh and K. Itoh, Phys. Plasmas 15, 052302 (2008).
  • [9] M. Wakatani, Stellarator and Heliotron Devices (Oxford University Press, Oxford 1998).
  • [10] S. Inagaki et al., Phys. Rev. Lett. 107, 115001 (2011).
  • [11] A. Fujisawa et al., Phys. Rev. Lett. 93, 165002 (2004).
  • [12] Y. Nagashima et al., Phys. Rev. Lett. 95, 095002 (2005).
  • [13] N. Kasuya et al., Proc. 38th EPS Conf. on Plasma Phys., Strasbourg, 2011, P4.113.
  • [14] N. Tamura et al., Nucl. Fusion 47, 449 (2007).

This paper may be cited as follows:

Naohiro KASUYA, Satoru SUGITA, Makoto SASAKI, Shigeru INAGAKI, Masatoshi YAGI, Kimitaka ITOH and Sanae-I. ITOH, Plasma Fusion Res. 8, 2403070 (2013).