[Table of Contents]

Plasma and Fusion Research

Volume 8, 2403064 (2013)

Regular Articles


A Verification Scenario of Knock-on Tail Formation due to Nuclear Plus Interference Scattering in 3He-Containing Deuterium Plasmas
Hideaki MATSUURA, Kei IWAMURA and Yasuyuki NAKAO
Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
(Received 20 November 2012 / Accepted 4 April 2013 / Published 22 May 2013)

Abstract

A scenario to verify the knock-on tail formation in deuteron distribution function by nuclear plus interference (NI) scattering and validate the Boltzmann-Fokker-Planck (BFP) model is proposed. Deuterium plasma with 3He-beam injection is considered and on the basis of the BFP model, knock-on tail formation in deuteron distribution function by energetic protons and the resulting modification of the neutron emission spectrum are examined. A recognizable change in the energetic-neutron emission rate due to the knock-on tail formation is presented. The noise neutrons for the measurement arising from the T(d,n)4He reaction is also evaluated by continuous-energy Monte Carlo transport simulation. The influence of the noise (slowing-down) neutrons on the measurement is discussed.


Keywords

nuclear plus interference scattering, fast-ion velocity distribution function, neutron emission spectrum, 3He-beam injection, Boltzmann-Fokker-Planck equation

DOI: 10.1585/pfr.8.2403064


References

  • [1] Y. Nakao et al., Fusion Technol. 27, 555 (1995).
  • [2] H. Matsuura et al., Proc. ICENES'93 (Chiba, 1993), edited by H.Yasuda (World Scientific, Singapore, 1994) p.266.
  • [3] L. Ballabio et al., Phys. Rev. E 55, 3358 (1997).
  • [4] J. Källene et al., Phys. Rev. Let. 85, 1246 (2000).
  • [5] H. Matsuura et al., Phys. Plasmas 13, 62507 (2006).
  • [6] J.J. Devaney et al., Nucl. Sci. Eng. 46, 323 (1971).
  • [7] S.T. Perkins et al., Nucl. Sci. Eng. 20, 77 (1981).
  • [8] Y. Nakao et al., Nucl. Fusion 21, 979 (1981).
  • [9] J. Galambos et al., Nucl. Fusion 24, 739 (1984).
  • [10] Y. Nakao et al., Nucl. Fusion 28, 1029 (1988).
  • [11] H. Matsuura et al., Plasma Fusion Res. 7, 2403076 (2012).
  • [12] D. Ryutov, Phys. Scr. 45, 153 (1992).
  • [13] M. Helander et al., Plasma Phys. Control. Fusion 35, 367 (1993).
  • [14] R.K. Fishier et al., Nucl. Fusion 34, 1291 (1994).
  • [15] A.J.H. Donné et al., Nucl. Fusion 47, S337 (2007).
  • [16] H. Matsuura et al., Phys. Plasmas 16, 0542507 (2009).
  • [17] H. Matsuura et al., Plasma Phys. Control. Fusion 53, 035023 (2011).
  • [18] H. Matsuura et al., Fusion Sci. Technol. 60, 634 (2011).
  • [19] E. Bittoni et al., Nucl. Fusion 29, 931 (1980).
  • [20] H. Brysk, Plasma Phys. 15, 611 (1973).
  • [21] M. Drosg and O. Schwerer, Handbook of Nuclear Activation Data, IAEA, Vienna, 1, 111 (1987).
  • [22] H.-S. Bosch et al., Nucl. Fusion 32, 611 (1992).
  • [23] Y. Nagaya et al., JAERI-1348 (2005).
  • [24] A.M. Sukegawa et al., Fusion Eng. Des. 82, 2799 (2007).

This paper may be cited as follows:

Hideaki MATSUURA, Kei IWAMURA and Yasuyuki NAKAO, Plasma Fusion Res. 8, 2403064 (2013).