[Table of Contents]

Plasma and Fusion Research

Volume 8, 2402093 (2013)

Regular Articles


Development of Impurity Profile Diagnostics in the Ergodic Layer of LHD using 3 m Normal Incidence VUV Spectrometer
Tetsutarou OISHI, Shigeru MORITA, Chunfeng DONG, Erhui WANG1), Motoshi GOTO and LHD Experiment Group
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
1)
Department of Fusion Science, Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 26 November 2012 / Accepted 23 April 2013 / Published 15 August 2013)

Abstract

Space-resolved vacuum ultraviolet (VUV) spectroscopy using a 3 m normal incidence spectrometer has been developed in the large helical device (LHD) to study plasma transport in the ergodic layer by measuring the spatial profile of VUV lines from impurities emitted in the wavelength range of 300-3200 Å. Characteristics of the diagnostics system such as line dispersion, observable region and spatial resolution were evaluated. CIV spectra of 1548.20 × 2 Å were measured clearly. Intensity and ion temperature profiles were obtained simultaneously using CIV emissions in high-density discharges. Dependencies of the CIV intensity profiles on the electron density and magnetic configurations were observed.


Keywords

VUV spectroscopy, impurity transport, normal incidence spectrometer, space-resolved diagnostics, large helical device, ergodic layer, stochastic magnetic field, carbon ion, ion temperature measurement

DOI: 10.1585/pfr.8.2402093


References

  • [1] P.C. Stangeby and G.M. McCracken, Nucl. Fusion 30, 1225 (1990).
  • [2] R. Burhenn et al., Nucl. Fusion 49, 065005 (2009).
  • [3] M. Kobayashi et al., Proc. 22nd Int. Conf. on Fusion Energy, Geneva, Switzerland, 13-18 October 2008 (Vienna: IAEA), EX/9-4 “Study on impurity screening in stochastic magnetic boundary of the Large Helical Device” (2008).
  • [4] M.B. Chowdhuri et al., Phys. Plasmas 16, 062502 (2009).
  • [5] S. Morita et al., Plasma Phys. Control. Fusion 48, A269 (2006).
  • [6] S. Morita and M. Goto, Rev. Sci. Instrum. 74, 2036 (2003).
  • [7] R. Katai et al., Rev. Sci. Instrum. 77, 10F307 (2006).
  • [8] R. Katai et al., Plasma Fusion Res. 2, 014 (2007).
  • [9] R. Katai et al., J. Plasma Fusion Res. SERIES 7, 9 (2006).
  • [10] R. Katai et al., J. Quant. Spectrosc. Radiat. Transfer 107, 120 (2007).
  • [11] S. Morita et al., Plasma Sci. Technol. 12, 341 (2010).
  • [12] C.F. Dong et al., Rev. Sci. Instrum. 81, 033107 (2010).
  • [13] C.F. Dong et al., Phys. Plasmas 18, 082511 (2011).
  • [14] C.F. Dong et al., Plasma Fusion Res. 6, 2402078 (2011).
  • [15] C.F. Dong et al., Plasma Sci. Technol. 13, 140 (2011).
  • [16] E.H. Wang et al., Plasma Fusion Res. 7, 2402059 (2012).
  • [17] T. Morisaki et al., J. Nucl. Mater. 313-316, 548 (2003).

This paper may be cited as follows:

Tetsutarou OISHI, Shigeru MORITA, Chunfeng DONG, Erhui WANG, Motoshi GOTO and LHD Experiment Group, Plasma Fusion Res. 8, 2402093 (2013).