[Table of Contents]

Plasma and Fusion Research

Volume 8, 2402038 (2013)

Regular Articles


Modeling of Impurity Transport in the Divertor of JET
Andreas KIRSCHNER1), Dmitry MATVEEV1,2), Mathias GROTH3), Sebastijan BREZINSEK1), Vladislav KOTOV1), Karl KRIEGER4), Dmitry BORODIN1), Carolina BJÖRKAS1,5), Markus AIRILA6), Hans G. ESSER1), Gennady SERGIENKO1), Ulrich SAMM1) and JET EFDA CONTRIBUTORS7)
1)
Institut für Energie- und Klimaforschung - Plasmaphysik, Forschungszentrum Jülich, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Jülich, Germany
2)
Department of Applied Physics, Gent University, Rozier 44, B-9000 Gent, Belgium
3)
Aalto University, Association EURATOM-Tekes, Espoo, Finland
4)
Max-Planck-Institut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany
5)
EURATOM-Tekes, Department of Physics, P.O.B 64, 00014 University of Helsinki, Finland
6)
VTT Technical Research Centre of Finland, Association EURATOM-Tekes, 02044 VTT, Finland
7)
JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK
(Received 6 December 2012 / Accepted 4 March 2013 / Published 22 May 2013)

Abstract

Deposition/erosion measurements by means of a Quartz Micro Balance (QMB) located below the Load Bearing Septum Replacement Plate in the private flux region of the inner divertor of JET (with full carbon wall) revealed net deposition with the inner strike point located on the vertical tile and net erosion with the inner strike point on the horizontal tile [H.G. Esser et al., J. Nucl. Mater. 390-391, 148 (2009)]. ERO calculations show about 3.5 times larger flux entering the QMB aperture when the inner strike point is located on the vertical plate compared to the case when strike point is on the horizontal plate - thus indicating similar behavior. Using these fluxes from ERO as input, detailed modeling of erosion/deposition at the QMB itself considering the realistic geometry of the QMB housing has been performed with the 3D-GAPS code. The QMB measurements can be reproduced with combined ERO/3D-GAPS modeling if erosion due to deuterium atoms within the QMB housing is taken into account.


Keywords

JET, divertor, erosion, deposition, impurity transport, Quartz Micro Balance, plasma-wall interaction

DOI: 10.1585/pfr.8.2402038


References

  • [1] T. Loarer, J. Nucl. Mater. 390-391, 20 (2009).
  • [2] H.G. Esser et al., J. Nucl. Mater. 390-391, 148 (2009).
  • [3] H.G. Esser et al., Fusion Eng. Des. 66-68, 855 (2003).
  • [4] A. Kirschner et al., Nucl. Fusion 40, 989 (2000).
  • [5] D. Matveev et al., Plasma Phys. Control. Fusion 52, 075007 (2010).
  • [6] A. Kirschner et al., J. Nucl. Mater. 328, 62 (2004).
  • [7] A. Kirschner et al., J. Nucl. Mater. 415, S239 (2011).
  • [8] R.P. Doerner et al., Nucl. Fusion 52, 103003 (2012).
  • [9] V. Kotov et al., J. Nucl. Mater. in press, DOI: 10.1016/j.jnucmat.2013.01.091.
  • [10] A. Loarte, Plasma Phys. Control. Fusion 43, R183 (2001).

This paper may be cited as follows:

Andreas KIRSCHNER, Dmitry MATVEEV, Mathias GROTH, Sebastijan BREZINSEK, Vladislav KOTOV, Karl KRIEGER, Dmitry BORODIN, Carolina BJÖRKAS, Markus AIRILA, Hans G. ESSER, Gennady SERGIENKO, Ulrich SAMM and JET EFDA CONTRIBUTORS, Plasma Fusion Res. 8, 2402038 (2013).