[Table of Contents]

Plasma and Fusion Research

Volume 8, 2401028 (2013)

Regular Articles


Secondary Electron Emission from a Negatively Charged Spherical Dust Particle by Electron Incidence
Yukihiro TOMITA, Gakushi KAWAMURA, Zhihui HUANG1), Yudong PAN1) and Longwen YAN1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
1)
Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan, China
(Received 22 November 2012 / Accepted 8 March 2013 / Published 23 April 2013)

Abstract

Secondary electron emission (SEE) from a spherical metallic dust particle by electron incidence was analyzed according to the OML (Orbit Motion Limited) model. As the observed dust speed in fusion plasmas (< 100 m/s) is much slower than electron thermal speed, its effect to the SEE current is negligibly small. It is clarified that there is a window of electron temperature, where the ratio of the SEE current to the absorbed electron current exceeds unity; for graphite 80 eV < Te < 326 eV and the maximum of the ratio ∼ 1.10 at Te ∼ 165 eV, for tungsten 32 eV < Te, the maximum ∼ 2.47 at Te ∼ 358 eV. These excesses come from the inverse proportion of the incident angle to the dust particle.


Keywords

dust particle, secondary electron emission, electron impact, dust charge

DOI: 10.1585/pfr.8.2401028


References

  • [1] J. Winter, Plasma Phys. Control. Fusion 40, 1201 (1998).
  • [2] A. Sagara, S. Masuzaki, T. Morisaki et al., J. Nucl. Mater. 313-316, 1 (2003).
  • [3] J. Sharpe, V. Rohde, The ASDEX-U Experiment Team et al., J. Nucl. Mater. 313-316, 455 (2003).
  • [4] J. Winter, Plasma Phys. Control. Fusion 46, B583 (2004).
  • [5] S. Krasheninnikov, Y. Tomita, R. Smirnov and R. Janev, Phys. Plasma 11, 3141 (2004).
  • [6] A. Pigarov, S. Krasheninnikov, T. Soboleva and T. Rognlien, Phys. Plasma 12, 122508 (2005).
  • [7] R. Smirnov, A. Pigarov, M. Rosenberg et al., Plasma Phys. Control. Fusion 49, 347 (2007).
  • [8] H. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727 (1926).
  • [9] J. Allen, Phisica Scripta 45, 497 (1992).
  • [10] Y. Tomita, G. Kawamura, Z.H. Huang, Y.D. Pan and L.W. Yan, Plasma Sci. Technol. 13, 11 (2011).
  • [11] E.W. Thomas, Data Compendium for Plasma-Surface Interaction (Vienna: IAEA) p.94.
  • [12] J.M. Pedgley and G.M. McCracken, Plasma Phys. Control. Fusion 35, 397 (1993).

This paper may be cited as follows:

Yukihiro TOMITA, Gakushi KAWAMURA, Zhihui HUANG, Yudong PAN and Longwen YAN, Plasma Fusion Res. 8, 2401028 (2013).