[Table of Contents]

Plasma and Fusion Research

Volume 8, 1406012 (2013)

Regular Articles


Numerical Studies of Ponderomotive Acceleration and Ion Cyclotron Resonance: Application to Next Generation Electric Thrusters
Fumiko OTSUKA, Tohru HADA, Shunjiro SHINOHARA1), Takao TANIKAWA2) and Takeshi MATSUOKA3)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
1)
Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
2)
Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
3)
Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210, Japan
(Received 23 March 2012 / Accepted 30 January 2013 / Published 27 March 2013)

Abstract

We have examined ponderomotive acceleration/ion cyclotron resonance (PA/ICR) of argon ions by performing test particle simulations. The PA gives rise to the pure parallel acceleration of ions, while the ICR causes the perpendicular ion heating followed by the energy conversion from the perpendicular to the parallel direction in the presence of a divergent background magnetic field. The energy gain by the PA/ICR is classified in terms of the adiabatic parameter, Λ = LBΩ0/v0||, where LB is the axial divergent scale length of the background magnetic field, Ω0 is the ion gyrofrequency at the resonance, and v0|| is the initial ion drift velocity along the axial magnetic field. For Λ < 100, the energy gain, Δε, due to the PA/ICR increases as Λ increases. For Λ > 100, Δε saturates since the increased axial velocity of the ion via the PA reduces the transit time to cross the acceleration region. When the externally applied rf electric field intensity is increased to 1000 V/m, we find a maximal 60% increase in the energy gain for the PA/ICR scheme compared with the energy gain by the ICR only. We have applied the PA/ICR scheme to the next-generation electric thruster, and have estimated the thrust including ion wall-loss and ion-neutral collisions.


Keywords

electrodeless plasma thruster, electromagnetic acceleration, ponderomotive force, ion cyclotron resonance

DOI: 10.1585/pfr.8.1406012


References

  • [1] K. Toki, S. Shinohara, T. Tanikawa, T. Hada, I. Funaki, K.P. Shamrai, Y. Tanaka and A. Yamaguchi, J. Plasma Fusion Res. SERIES 8, 25 (2009).
  • [2] S. Shinohara, T. Hada, T. Motomura, K. Tanaka, T. Tanikawa, K. Toki, Y. Tanaka and K.P. Shamrai, Phys. Plasmas 16, 057104 (2009).
  • [3] H. Nishida, S. Shinohara, T. Tanikawa, T. Hada, I. Funaki, I. Matsuoka, K.P. Shamrai and T. Motomura, 46th AIAA/ASME/SAE/ASEE Joint Propul. Conf. & Exhibit, AIAA2010-7013, Nashville (2010).
  • [4] H. Nishida, S. Shinohara, T. Tanikawa, T. Hada, I. Funaki, T. Matsuoka, F. Otsuka, K.P. Shamrai, T. Motomura, T. Nakamura and T.S. Rudenko, proceedings of Plasma 2011, Kanazawa, Japan (2011).
  • [5] S. Shinohara, H. Nishida, K. Yokoi, T. Nakamura, T. Tanikawa, T. Hada, F. Otsuka, T. Motomura, E. Ohno, I. Funaki, T. Matsuoka, K.P. Shamrai and T.S. Rudenko, 32nd Int. Electric Propul. Conf., IEPC-2011-056, Wiesbaden, 11-15 Sept. (2011).
  • [6] T. Matsuoka, I. Funaki, T. Nakamura, K. Yokoi, H. Nishida, T.S. Rudenko, K.P. Shamrai, T. Tanikawa, T. Hada and S. Shinohara, Plasma Fusion Res. 6, 2406103 (2011).
  • [7] E.A. Bering III, F.R. Chang Díaz, J.P. Squire, T.W. Glover, M.D. Carter, G.E. McCaskill, B.W. Longmier, M.S. Brukardt, W.J. Chancery and V.T. Jacobson, Phys. Plasmas 17, 043509 (2010).
  • [8] C. Charles, Plasma Sources Sci. Technol. 16, R1 (2007).
  • [9] I.Y. Dodin, N.J. Fisch and J.M. Rax, Phys. Plasmas 11, 5046 (2004).
  • [10] A. Ando, K. Hattori and M. Inutake, Proceedings of Space Plasma Symposium 2005, pp.64-69, in Japanese (2006).
  • [11] A. Ando, Y. Hosokawa, M. Hatanaka, H. Tobari, K. Hattori and M. Inutake, Thin Solid Films 506-507, 601 (2006).
  • [12] G. Emsellem, 29th Int. Electric Propul. Conf., IEPC-2005-156, Princeton (2005).
  • [13] B.M. Lamb, G. Dimonte and G.J. Morales, Phys. Fluids 27, 1401 (1984).
  • [14] Y. Arakawa, H. Kuninaka, Y. Nakayama and K. Nishiyama, Ion engines for powered flight in space (Corona Publishing Co., LTD., 2006) (in Japanese).
  • [15] T.H. Stix, Waves in plasmas (Springer-Verlag New York, Inc., 1992) p.485.
  • [16] V. Vahedi and M. Surendra, Comput. Phys. Commun. 87, 179 (1995).
  • [17] W.H. Cramer, J. Chem. Phys. 30, 641 (1959).
  • [18] M.L. Vestal, C.R. Blakley and J.H. Futrell, Phys. Rev. A 17, 17 (1978).
  • [19] http://www.txcorp.com/products/VORPAL/
  • [20] B.N. Breizman and A.V. Arefiev, Phys. Plasmas 8, 907 (2001).

This paper may be cited as follows:

Fumiko OTSUKA, Tohru HADA, Shunjiro SHINOHARA, Takao TANIKAWA and Takeshi MATSUOKA, Plasma Fusion Res. 8, 1406012 (2013).