[Table of Contents]

Plasma and Fusion Research

Volume 8, 1405159 (2013)

Regular Articles


Chemical Binding States of Carbon Atoms Migrated in Tungsten Coating Layer Exposed to JT-60U Divertor Plasmas
Masakatsu FUKUMOTO, Tomohide NAKANO, Yoshio UEDA1) and Kiyoshi ITAMI
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
1)
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
(Received 5 July 2013 / Accepted 13 September 2013 / Published 15 November 2013)

Abstract

Carbon migration in the tungsten coating layer exposed to JT-60U divertor plasmas has been investigated by analysis of chemical binding states of the carbon atoms. More than 1% of carbon atoms were accumulated as graphitic carbon, amorphous carbon and/or carbon-deuterium bonds. This concentration was more than five orders of magnitude higher than the solubility of carbon atoms in tungsten lattice. Up to 20% of ditungsten carbide (W2C) was also formed in the tungsten coating layer. These findings suggested the following carbon migration mechanism in the tungsten coating layer. The incident carbon migrates along grain boundaries and defects such as pores over the depth which is evaluated by the carbon diffusion coefficient in tungsten lattice. The carbon atoms trapped on grain surface penetrate and diffuse in the grains. The carbon atoms exceeded the solubility of carbon atoms in tungsten lattice chemically bind to tungsten atoms and form W2C.


Keywords

tungsten, carbon, tritium retention, mixed material, JT-60U

DOI: 10.1585/pfr.8.1405159


References

  • [1] D. Naujoks, Plasma-Material Interaction in Controlled Fusion (Springer-Verlag, Heidelberg) p.213.
  • [2] A. Kreter et al., J. Nucl. Mater. 390-391, 38 (2009).
  • [3] R.A. Pitts et al., J. Nucl. Mater. 438, S48 (2013).
  • [4] S. Brezinsek et al., J. Nucl. Mater. 438, S303 (2013).
  • [5] T. Nakano et al., Nucl. Fusion 49, 115024 (2009).
  • [6] H. Höhnle et al., Nucl. Fusion 51, 083013 (2011).
  • [7] Y. Ueda et al., J. Nucl. Mater. 363-365, 66 (2007).
  • [8] Y. Ueda et al., Nucl. Fusion 49, 065027 (2009).
  • [9] M. Mayer et al., J. Nucl. Mater. 390-391, 538 (2009).
  • [10] K. Sugiyama et al., Nucl. Fusion 50, 035001 (2010).
  • [11] M. Fukumoto et al., J. Plasma Fusion Res. SERIES 9, 369 (2010).
  • [12] M. Fukumoto et al., J. Nucl. Mater. 415, S705 (2011).
  • [13] S. Tamura et al., J. Nucl Mater. 329-333, 711 (2004).
  • [14] D. Shirley, Phys. Rev. B 5, 4709 (1972).
  • [15] J. Luthin and Ch. Linsmeier, Surface Science 454-456, 78 (2000).
  • [16] E. Igarashi et al., J. Nucl. Mater. 363-365, 910 (2007).
  • [17] J. Kovac, Materials and Technology 45, 191 (2011).
  • [18] MultiPak, Ver. 6.1A, Physical Electronics, 1999.
  • [19] H.J. Goldschmidt and J.A. Brand, J. Less-Common Metals 5, 181 (1963).
  • [20] L.N. Aleksandrov et al., Sov. Powder Metall. Met. Ceram. 4, 234 (1964).
  • [21] I.I. Kovenski, Diffusion in BCC Metals. ASM, p.285 (1965).
  • [22] V.Ya. Shchelkonogov et al., Phys. Met. Metallogr. 25, 68 (1968).
  • [23] A. Shepela, J. Less-Common Metals 26, 33 (1972).
  • [24] H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007) p.553.
  • [25] H. Maier et al., Phys. Scr. T138, 014031 (2009).
  • [26] V. Philipps et al., Fusion Eng. Des. 85, 1581 (2010).
  • [27] J.J. Yeh et al., Diam. Relat. Mater. 5, 1195 (1996).
  • [28] Y. Ueda et al., Fusion Eng. Des. 81, 233 (2006).

This paper may be cited as follows:

Masakatsu FUKUMOTO, Tomohide NAKANO, Yoshio UEDA and Kiyoshi ITAMI, Plasma Fusion Res. 8, 1405159 (2013).