[Table of Contents]

Plasma and Fusion Research

Volume 8, 1405153 (2013)

Regular Articles


Development of Langmuir Probes on Divertor Cassettes in JT-60SA
Masakatsu FUKUMOTO, Shinji SAKURAI, Nobuyuki ASAKURA1) and Kiyoshi ITAMI
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
1)
Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212, Japan
(Received 10 May 2013 / Accepted 28 August 2013 / Published 15 November 2013)

Abstract

Langmuir probes installed in the lower divertor region under high heat flux have been developed and manufactured for JT-60SA. A probe electrode with a head having a rooftop shape is made of a carbon fiber composite and can withstand heat fluxes of up to 10 MW/m2 for 5 s and 1 MW/m2 for 100 s. This has been achieved by increasing the volume of the probe electrode that is not directly exposed to the plasma. To minimize the reduction of the heat removal performance of the divertor, the Langmuir probes are installed in toroidal gaps with widths of 10 mm between the divertor cassettes, without embedding them in the divertor tiles. Aluminum oxide coatings have been applied to insulate the probe electrodes from the divertor cassettes and to limit the toroidal thickness to 8 mm. Brazing of the nickel connectors to the probe electrodes has reduced the toroidal thickness of the Langmuir probes. A minimum spatial resolution of 13.5 mm has been achieved to the Langmuir probes installed on the inner and outer divertor targets.


Keywords

Langmuir probe, Al2O3 coating, brazing, JT-60SA, divertor plasma, plasma equilibrium

DOI: 10.1585/pfr.8.1405153


References

  • [1] N. Asakura et al., J. Nucl. Mater. 363-365, 41 (2007).
  • [2] C.S. Pitchery and P.C. Stangebyz, Plasma Phys. Control. Fusion 39, 779 (1997).
  • [3] A. Loarte et al., Nucl. Fusion 47, S128 (2007).
  • [4] P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Taylor & Francis, New York, 2000) p.477.
  • [5] S. Ishida et al., Nucl. Fusion 51, 094018 (2011).
  • [6] Y. Kamada et al., Nucl. Fusion 51, 073011 (2011).
  • [7] G.F. Matthews et al., Control. Plasma Phys. 36, 29 (1996).
  • [8] J.G. Watkins et al., Rev. Sci. Instrum. 79, 10F125 (2008).
  • [9] S. Sakurai et al., Fusion Eng. Des. 82, 1767 (2007).
  • [10] P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Taylor & Francis, New York, 2000) p.92.
  • [11] P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Taylor & Francis, New York, 2000) p.79.
  • [12] W. Fundamenski et al., Nucl. Fusion 51, 083028 (2011).
  • [13] K. Masaki et al., Fusion Eng. Des. 87, 742 (2012).
  • [14] K. Shimizu et al., Nucl. Fusion 49, 065028 (2009).
  • [15] H. Kawashima et al., J. Nucl. Mater. 415, S948 (2011).
  • [16] M. Wischmeier et al., J. Nucl. Mater. 390-391, 250 (2009).
  • [17] N. Asakura et al., J. Nucl. Mater. 290-293, 825 (2001).
  • [18] A. Loarte et al., Nucl. Fusion 38, 331 (1998).
  • [19] K. Hoshino et al., J. Plasma Fusion Res. SERIES 9, 592 (2010).

This paper may be cited as follows:

Masakatsu FUKUMOTO, Shinji SAKURAI, Nobuyuki ASAKURA and Kiyoshi ITAMI, Plasma Fusion Res. 8, 1405153 (2013).