[Table of Contents]

Plasma and Fusion Research

Volume 8, 1405111 (2013)

Regular Articles


Manufacture of Vacuum Plasma Spraying Tungsten with Homogenous Texture on Reduced Activation Ferritic Steel at about 873 K
Tomonori TOKUNAGA, Hideo WATANABE1), Naoaki YOSHIDA1), Takuya NAGASAKA2), Ryuta KASADA3), Akihiko KIMURA3), Masayuki TOKITANI2), Masatoshi MITSUHARA, Hideharu NAKASHIMA, Suguru MASUZAKI2), Takeshi TAKABATAKE4), Nobuyoshi KUROKI4), Koichiro EZATO5), Satoshi SUZUKI5) and Masato AKIBA5)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan
1)
Research Institute for Applied Mechanics, Kyushu University, Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan
2)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-city, Gifu 509-5292, Japan
3)
Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
4)
Tocalo Co. Ltd, 14-3 Minamifutami, Futami-cho, Akasi-city, Hyogo 674-0093, Japan
5)
Japan Atomic Energy Agency, 4002 Narita Oarai, Higashi-ibaraki-gun, Ibaraki 311-1393, Japan
(Received 10 October 2012 / Accepted 22 April 2013 / Published 15 August 2013)

Abstract

The key to improving the heat load of vacuum plasma sprayed tungsten coatings on low activation ferritic steel maintained at low temperatures is elimination of stratified low-density layers with many large pores, in which thermal cracks propagate preferentially. The low-density layers are formed owing to the deposition of large solidified tungsten particles, which remain mainly at the periphery of the spray stream. In this study, by shading this periphery, partially homogeneous tungsten coatings without large pores were successfully obtained. The coatings are expected to show good heat load, which is feasible for nuclear fusion applications.


Keywords

first wall, vacuum plasma spray, tungsten, F82H, EBSD, columnar grain

DOI: 10.1585/pfr.8.1405111


References

  • [1] T. Takei and H. Nagasaka, Yousya Hifukuhou (thermal spray method) (Nikkan Kogyo Shimbun, Tokyo, 1964), c.1.1 [in Japanese].
  • [2] K. Tokunaga et al., Fusion Eng. Des. 81, 133 (2006).
  • [3] M. Tokitani et al., J. Nucl. Mater. 415, S87 (2011).
  • [4] Y. Yahiro et al., J. Nucl. Mater. 386-388, 784 (2009).
  • [5] H. Greuner et al., Fusion Eng. Des. 75-79, 333 (2005).
  • [6] H. Greuner et al., J. Nucl. Mater. 417, 495 (2011).
  • [7] H. Bolt et al., J. Nucl. Mater. 329-333, 66 (2004).
  • [8] T. Tokunaga et al., Reports of Research Institute for Applied Mechanics Kyushu Univ., No.139, 153 (2010) [in Japanese].
  • [9] T. Tokunaga et al., J. Nucl. Mater., In Press, Corrected Proof, Dec 2012.
  • [10] T. Nagasaka et al., J. Nucl. Mater. 417, 306 (2011).
  • [11] S. Jitsukawa et al., J. Nucl. Mater. 307-311, 179 (2002).

This paper may be cited as follows:

Tomonori TOKUNAGA, Hideo WATANABE, Naoaki YOSHIDA, Takuya NAGASAKA, Ryuta KASADA, Akihiko KIMURA, Masayuki TOKITANI, Masatoshi MITSUHARA, Hideharu NAKASHIMA, Suguru MASUZAKI, Takeshi TAKABATAKE, Nobuyoshi KUROKI, Koichiro EZATO, Satoshi SUZUKI and Masato AKIBA, Plasma Fusion Res. 8, 1405111 (2013).