[Table of Contents]

Plasma and Fusion Research

Volume 8, 1405004 (2013)

Regular Articles


Deuterium Retention in Plasma Sprayed Tungsten Exposed to Low Energy Deuterium Plasma
Aleksandr RUSINOV, Mizuki SAKAMOTO1), Hideki ZUSHI2), Ryohei OHYAMA, Koichiro HONDA, Tetsuo TANABE and Naoaki YOSHIDA2)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
1)
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
2)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
(Received 5 December 2011 / Accepted 19 November 2012 / Published 27 March 2013)

Abstract

Deuterium retention and trapping in tungsten plasma sprayed layers after low energy plasma irradiation was investigated by means of thermal desorption technique. Plasma irradiation at low temperatures (< 650 K) showed the retention and trapping similar to polycrystalline tungsten material. On the other hand, irradiation at high temperatures (> 650 K) showed significant increase of the retention in the plasma sprayed layers contrary to the polycrystalline material. Thermal desorption spectra showed extremely high temperatures of the peak positions which are non-typical for the tungsten materials. The possible reasons for such high deuterium retention in the plasma sprayed layers after irradiation at high temperatures and the possible trapping mechanisms are discussed.


Keywords

tungsten, TDS, deuterium retention

DOI: 10.1585/pfr.8.1405004


References

  • [1] J. Matĕjíček, P. Chráska and J. Linke, Thermal Spray Coatings for Fusion, Applications - Review, Journal of Thermal Spray Technology 16(1), 64 (2007).
  • [2] S.K. Sharma, H. Zushi, N. Yoshida et al., Fusion Eng. Des. 87, 77 (2012).
  • [3] M. Poon, A.A. Haasz and J.W. Davis, J. Nucl. Mater. 374, 390 (2008).
  • [4] O.V. Ogorodnikova, J. Roth and M. Mayer, J. Nucl. Mater. 313-316, 469 (2003).
  • [5] A. Rusinov, Yu. Gasparyan, N. Trifonov et al., J. Nucl. Mater. 415, S645 (2011).
  • [6] J.P. Sharpe, R.D. Kolasinski, M. Shimada et al., J. Nucl. Mater. 390-391, 709 (2009).
  • [7] V. Kh. Alimov and J. Roth, Physica Scripta T128, 6 (2007).
  • [8] O.V. Ogorodnikova, T. Schwarz-Selinger, K. Sugiyama et al., Physica Scripta T138, 014053 (2009).
  • [9] V.Kh. Alimov, H. Nakamura, B. Tyburska-Püschel et al., J. Nucl. Mater. 414, 479 (2011).
  • [10] Y. Niu, S. Suzuki, X. Zheng et al., J. Nucl. Mater. 417, 551 (2011).
  • [11] V.Kh. Alimov et al., J. Nucl. Mater. 415, S628 (2011).
  • [12] T. Suda, H. Miyauchi, A. Yoshikawa et al., Fusion Eng. Des. 82, 1762 (2007).
  • [13] T. Ito, Y. Yamauchi, T. Hino et al., J. Nucl. Mater. 417, 1147 (2011).
  • [14] T. Otsuka, T. Tanabe and K. Tokunaga, Physica Scripta T145, 014035 (2011).
  • [15] N. Matsunami, N. Ohno and M. Tokitani, J. Nucl. Mater. 390-391, 693 (2009).
  • [16] G.-N. Luo et al., Nucl. Instrum. Methods in Phy. Res. B 267, 3041 (2009).

This paper may be cited as follows:

Aleksandr RUSINOV, Mizuki SAKAMOTO, Hideki ZUSHI, Ryohei OHYAMA, Koichiro HONDA, Tetsuo TANABE and Naoaki YOSHIDA, Plasma Fusion Res. 8, 1405004 (2013).