[Table of Contents]

Plasma and Fusion Research

Volume 8, 1403082 (2013)

Regular Articles


Turbulence Analyses of Improved Electron Energy Confinement in H-Mode Plasmas with Gyrokinetic Calculations
Emi NARITA, Mitsuru HONDA1), Nobuhiko HAYASHI1), Tomonori TAKIZUKA, Shunsuke IDE1), Kiyoshi ITAMI1), Akihiko ISAYAMA1) and Takeshi FUKUDA
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
1)
Japan Atomic Energy Agency, Naka, Ibaraki 311-0193, Japan
(Received 24 February 2013 / Accepted 4 May 2013 / Published 19 June 2013)

Abstract

In the International Global H-mode Confinement Database, there are data that have the HH98(y,2) factor exceeding unity in the region where the electron temperature is higher than the ion one. This high value of HH98(y,2) can be attributed mainly to the improved electron confinement. The conditions required for this improvement are investigated with the local flux-tube gyrokinetic code GS2. When the ion temperature gradient length is shorter than the electron one, ion temperature gradient (ITG) mode is dominant, whereas trapped electron mode (TEM) is stabilized. Under this situation, the electron heat diffusivity is suppressed. In addition, an effect of the magnetic shear s is also studied in the positive shear range, 0.6 ≤ s ≤ 1.4, and the reduction in the electron and ion heat transport with increasing s is found.


Keywords

energy confinement, turbulent transport, ITG/TEM transport, gyrokinetic code, temperature gradient, magnetic shear

DOI: 10.1585/pfr.8.1403082


References

  • [1] Progress in the ITER Physics Basis, Chapter2: Plasma confinement and transport, Nucl. Fusion 47, S18 (2007).
  • [2] C.C. Petty et al., Phys. Rev. Lett. 83, 3661 (1999).
  • [3] J. Weiland et al., Plasma Phys. Control. Fusion 47, 441 (2005).
  • [4] A. Manini et al., Nucl. Fusion 46, 1047 (2006).
  • [5] E. Narita et al., Plasma Fusion Res. 7, 2403102 (2012).
  • [6] The International Global H-mode Confinement Database, http://efdasql.ipp.mpg.de/hmodepublic/
  • [7] ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database et al., Nucl. Fusion 39, 2175 (1999).
  • [8] M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995). Source program is downloaded from http://www.gs2.sourceforge.net/
  • [9] W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000).
  • [10] B.A. Trubnikov, in Reviews of Plasma Physics, edited by M.A. Leontovich (Consultants Bureau, New York, 1965) Vol.1, pp.105-204.
  • [11] J.E. Kinsey et al., Phys. Plasmas 13, 022305 (2006).
  • [12] H. Nordman et al., Plasma Phys. Control. Fusion 49, 985 (2007).
  • [13] J.W. Connor et al., Phys. Rev. Lett. 40, 396 (1978).
  • [14] The ITER 1D Modelling Working Group, Nucl. Fusion 40, 1955 (2000).
  • [15] R.L. Miller et al., Phys. Plasmas 5, 973 (1998).
  • [16] F. Jenko et al., Plasma Phys. Control. Fusion 47, B195 (2005).
  • [17] A.M. Dimits et al., Phys. Plasmas 7, 969 (2000).
  • [18] C. Angioni et al., Nucl. Fusion 44, 827 (2004).
  • [19] E. Fable et al., Plasma Phys. Control. Fusion 52, 015007 (2010).
  • [20] L. Schmitz et al., Nucl. Fusion 52, 023003 (2012).
  • [21] S. Hamaguchi and W. Horton, Phys. Fluids B 2, 1833 (1990).
  • [22] S.I. Braginskii, in Reviews of Plasma Physics, edited by M.A. Leontovich (Consultants Bureau, New York, 1965) Vol.1, pp.205-311.
  • [23] X. Lapillonne et al., Phys. Plasmas 16, 032308 (2009).
  • [24] R.E. Waltz et al., Phys. Plasmas 14, 056116 (2007).
  • [25] T. Goerler and F. Jenko, Phys. Rev. Lett. 100, 185002 (2008).
  • [26] N. Hayashi and JT-60 Team, Phys. Plasmas 17, 056112 (2010).
  • [27] R.E. Waltz et al., Phys. Plasmas 4, 2482 (1997).
  • [28] G.M. Staebler et al., Phys. Plasmas 14, 055909 (2007).

This paper may be cited as follows:

Emi NARITA, Mitsuru HONDA, Nobuhiko HAYASHI, Tomonori TAKIZUKA, Shunsuke IDE, Kiyoshi ITAMI, Akihiko ISAYAMA and Takeshi FUKUDA, Plasma Fusion Res. 8, 1403082 (2013).