[Table of Contents]

Plasma and Fusion Research

Volume 8, 1402066 (2013)

Regular Articles


Observation of Edge Filamentary Structure Motion during Supersonic Molecular-Beam Injection Using a Fast Camera in Heliotron J
Linge ZANG, Nobuhiro NISHINO1), Tohru MIZUUCHI2), Shinsuke OHSHIMA2), Masaki TAKEUCHI3), Keijun KASAJIMA, Mengyu SHA, Kiyofumi MUKAI4), Hyunyong LEE, Kazunobu NAGASAKI2), Hiroyuki OKADA2), Takashi MINAMI2), Shinji KOBAYASHI2), Satoshi YAMAMOTO2), Shigeru KONOSHIMA2), Yuji NAKAMURA and Fumimichi SANO2)
Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
1)
Graduate School of Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan
2)
Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
3)
Naka Fusion Institute, Japan Atomic Energy Agency, Naka 311-0193, Japan
4)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
(Received 18 October 2012 / Accepted 3 April 2013 / Published 19 June 2013)

Abstract

A perpendicular-view fast video camera has been installed in Heliotron J to observe the behavior of filamentary structures of edge plasma turbulence across the last closed flux surface (LCFS). Supersonic molecular-beam injection (SMBI) can greatly increase the edge Hα emission; hence, we used the high imaging rate and shutter speed of the camera to capture the behavior of the fast propagating filamentary structures. A high-pass fast Fourier transform filter on the time dimension was adopted to extract the fluctuation component from the raw data for each pixel. The motion of the filamentary structures was clearly visible when we applied an amplitude threshold to identify the intense structures. In addition, a time-resolved 2D cross-correlation technique was adopted to estimate the poloidal phase velocity of turbulence. The motion direction was found to be reversed dramatically just after an SMBI pulse.


Keywords

filamentary structure, edge fluctuation, edge turbulence, fast camera, SMBI, LCFS, Heliotron J, poloidal velocity

DOI: 10.1585/pfr.8.1402066


References

  • [1] S.J. Zweben and D.P. Stotler et al., Phys. Plasmas 9, 1981 (2002).
  • [2] D.P. Stotler et al., J. Nucl. Mater. 313-316, 1066 (2003).
  • [3] S.J. Zweben et al., Nucl Fusion 44, 134 (2004).
  • [4] D.L. Rudakov et al., Plasma Phys. Control. Fusion 44, 717 (2002).
  • [5] M.A. Meier et al., Phys. Rev. Lett. 87, 500 (2001).
  • [6] S.J. Zweben et al., Phys. Plasmas 17, 102502 (2010).
  • [7] L. Yao, New Developments in Nuclear Fusion Research (Nova Science Publishers, 2006) pp.61-87.
  • [8] L. Yao and J. Baldzuhn, Plasma Sci. Technol. 5, 1933 (2003).
  • [9] T. Mizuuchi et al., Contrib. Plasma Phys. 50, 639 (2010).
  • [10] T. Mizuuchi et al., J. Nucl. Mater. 415, S443 (2011).
  • [11] F. Sano et al., J. Plasma Fusion Res. Series 3, 26 (2000).
  • [12] T. Obiki et al., Nucl. Fusion 41, 833 (2011).
  • [13] N. Nishino et al., J. Nucl. Mater. 363-365, 628 (2007).
  • [14] L. Zang et al., Plasma Sci. Technol. 15, 213 (2013).
  • [15] B.D. Dudson et al., Plasma Phys. Control. Fusion 50, 124012 (2008).
  • [16] T. Windisch et al., PPPL Reports 4371 (2008).
  • [17] S.J. Zweben et al., Plasma Phys. Control. Fusion 54, 025008 (2012).

This paper may be cited as follows:

Linge ZANG, Nobuhiro NISHINO, Tohru MIZUUCHI, Shinsuke OHSHIMA, Masaki TAKEUCHI, Keijun KASAJIMA, Mengyu SHA, Kiyofumi MUKAI, Hyunyong LEE, Kazunobu NAGASAKI, Hiroyuki OKADA, Takashi MINAMI, Shinji KOBAYASHI, Satoshi YAMAMOTO, Shigeru KONOSHIMA, Yuji NAKAMURA and Fumimichi SANO, Plasma Fusion Res. 8, 1402066 (2013).