[Table of Contents]

Plasma and Fusion Research

Volume 8, 1306114 (2013)

Letters


Diagnostics of VHF Argon Plasmas by Laser Thomson Scattering
Weiting CHEN, Kohei OGIWARA1), Koichiro KOGE, Kentaro TOMITA, Kiichiro UCHINO and Yoshinobu KAWAI
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
1)
Graduate School of Information Science and Electrical Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
(Received 24 May 2013 / Accepted 5 June 2013 / Published 15 August 2013)

Abstract

The laser Thomson scattering (LTS) method has been applied to measure the electron density ne and electron temperature Te of very-high-frequency (VHF) argon plasmas. When the probing laser wavelength was 532 nm and the laser power density was ∼1015 W/m2, the Thomson scattering spectrum was obviously deformed by the effect of the photo-ionization of metastable argon atoms. The threshold laser power density at which the scattered light intensity from electrons in the plasma and that from electrons produced by photo-ionization are equivalent was found to be unexpectedly low (4 × 1013 W/m2). To avoid the photo-ionization of metastable argon atoms, the laser power density was decreased to around 1×1013 W/m2 by using a cylindrical lens as the focusing lens. Then, the ne and Te values measured by LTS and the probe method were compared for a VHF plasma using argon gas at a pressure of 100 mTorr. This comparison confirmed that the LTS method gave reasonable ne and Te values.


Keywords

Thomson scattering, VHF plasma, argon gas, photo-ionization, metastable atom

DOI: 10.1585/pfr.8.1306114


References

  • [1] Y. Yamauchi, Y. Takeuchi, H. Takatsuka, H. Yamashita, H. Muta and Y. Kawai, Contrib. Plasma Phys. 48, 4, 326 (2008).
  • [2] S.Y. Myong, K. Sriprapha, Y. Yashiki, S. Miyajima, A. Yamada and M. Konagai, Sol. Energy Mater. Sol. Cells 92, 639 (2008).
  • [3] U. Graf, J. Meier, U. Kroll, J. Bailat, C. Droz, E. Vallat-Sauvain and A. Shah, Thin Solid Films 427, 37 (2003).
  • [4] M. Isomura, M. Kondo and A. Matsuda, Jpn. J. Appl. Phys. 41, 1947 (2002).
  • [5] T.E. Sheridan and J. Goree, Phys. Fluids B 3, 4, 326 (2008).
  • [6] N. Yamamoto, K. Tomita, K. Sugita, T. Kurita, H. Nakashima and K. Uchino, Rev. Sci. Instrum. 83, 073106 (2012).
  • [7] S. Hassaballa, M. Yakushiji, Y. Kim, K. Tomita, K. Uchino and K. Muraoka, IEEE Trans. Plasma Sci. 32, 1 (2004).
  • [8] T. Nishimiya, Y. Takeuchi, Y. Yamauchi, H. Takatsuka, T. Shioya, H. Muta and Y. Kawai, Thin Solid Films 516, 4430 (2008).
  • [9] NIST Atomic Spectra Database Levels Form, http://physics.nist.gov/PhysRefData/ASD/levels_form.html
  • [10] M.D. Bowden, M. Kogano, Y. Suetome, T. Hori, K. Uchino and K. Muraoka, J. Vac. Sci. Technol. A 17, 493 (1999).
  • [11] M. Noguchi, T. Hirao, M. Shindo, K. Sakurauchi, Y. Yamagata, K. Uchino, Y. Kawai and K. Muraoka, Plasma Sources Sci. Technol. 12, 403 (2003).

This paper may be cited as follows:

Weiting CHEN, Kohei OGIWARA, Koichiro KOGE, Kentaro TOMITA, Kiichiro UCHINO and Yoshinobu KAWAI, Plasma Fusion Res. 8, 1306114 (2013).