[Table of Contents]

Plasma and Fusion Research

Volume 8, 1102002 (2013)

Review Articles


Energetic-Ion-Driven Global Instabilities Observed in the Large Helical Device and Their Effects on Energetic Ion Confinement
Kazuo TOI
National Institute for Fusion Science, Toki 509-5292, Japan
(Received 23 May 2012 / Accepted 20 August 2012 / Published 13 February 2013)

Abstract

This paper reviews various global instabilities destabilized by tangential neutral beam injection (NBI) in the Large Helical Device (LHD) plasmas. These global modes are toroidal Alfvén eigenmodes (TAEs), which are also observed in tokamak plasmas, and helicity-induced Alfvén eigenmodes (HAEs) which are observed only in three-dimensional plasmas such as LHD plasmas. Moreover, reversed magnetic shear Alfvén eigenmodes (RSAEs) are observed in a reversed magnetic shear (RS) plasma in the LHD, where the sign of the magnetic shear changes from positive in the plasma central region to negative in the plasma peripheral region. The RSAEs exhibit a characteristic frequency sweeping due to temporal evolution of the rotational transform profile. In the RS plasma, the energetic-ion-driven geodesic acoustic mode (GAM) is also excited. The GAM interacts nonlinearly with the RSAEs and generates a multitude of frequency sweeping modes through a three-wave-coupling process. The TAEs and GAM exhibit various types of nonlinear evolution, that is, pitchfork splitting and rapid frequency chirp-up and/or chirp-down. The linear and nonlinear characteristics of these energetic-ion-driven global instabilities in the LHD are compared with those observed in tokamak plasmas. TAE bursts having rapid frequency chirp-down induce redistribution and/or loss of energetic ions. Future important issues are briefly described.


Keywords

alpha particle, energetic ion, helical/stellarator, tokamak, Alfvén eigenmode, rotational transform profile, two-dimensional and three-dimensional plasmas

DOI: 10.1585/pfr.8.1102002


References

  • [1] A. Fasoli, C. Gormenzano, H.L. Berk et al., Nucl. Fusion 47, S264 (2007).
  • [2] L.P. Ku et al., Fusion Sci. Tecnol. 54, 673 (2008).
  • [3] K. Toi, K. Ogawa, M. Isobe, M. Osakabe, D.A. Spong and Y. Todo, Plasma Phys. Control. Fusion 53, 024008 (2011).
  • [4] C. Schwab, Phys. Fluids B 5, 3195 (1993).
  • [5] N. Nakajima, C.Z. Cheng and M. Okamoto, Phys. Fluids B 4, 1115 (1992).
  • [6] Ya. I. Kolesnichenko and V.V. Lutsenko, H. Wobig, Yu. V. Yakovenko and O.P. Fesenyuk, Phys. Plasmas 8, 491 (2001).
  • [7] D.A. Spong, R. Sanchez and A. Weller, Phys. Plasmas 10, 3217 (2003).
  • [8] S. Yamamoto, K. Toi, S. Ohdachi, N. Nakajima, S. Sakakibara et al., Nucl. Fusion 45, 326 (2005).
  • [9] K. Toi, M. Takechi, M. Isobe, N. Nakajima, M. Osakabe et al., Nucl. Fusion 40, 1349 (2000).
  • [10] M.N. Rosenbluth, H.L. Berk, J.W. Van Dam and D.M. Lindberg, Phys. Fluids B 4, 2189 (1992).
  • [11] H.L. Berk, J.W. Van Dam, Z. Guo and D.M. Lindberg, Phys. Fluids B 4, 1806 (1992).
  • [12] F, Zonca and L. Chen, Phys. Rev. Lett. 68, 592 (1992).
  • [13] D.A. Spong, E.D'Azevedo and Y. Todo, Phys. Plasmas 17, 022106 (2010).
  • [14] M. Takechi, K. Toi, S. Takagi et al., Phys. Rev. Lett. 83, 312 (1999).
  • [15] K. Toi, S. Yamamoto, N. Nakajima, S. Ohdachi, S. Sakakibara et al., Plasma Phys. Control. Fusion 46, S1 (2004).
  • [16] Ya.I. Kolesnichenko, S. Yamamoto, K. Yamazaki, V.V. Lutsenko, N. Nakajima et al., Phys. Plasmas 11, 158 (2004).
  • [17] G.Y. Fu, C.Z. Cheng, R. Budny, Z. Cheng, D.S. Darrow et al., Phys. Rev. Lett. 75, 2336 (1995).
  • [18] M. Saegusa et al., Plasma Phys. Control. Fusion 37, 295 (1995).
  • [19] S.E. Sharapov et al., Nucl. Fusion 39, 373 (1999).
  • [20] G.J. Kramer, S.E. Sharapov, R. Nazikian, N.N. Gorelenkov and R.V. Budny, Phys. Rev. Lett. 92, 015001 (2004).
  • [21] Ya. I. Kolesnichenko et al., Phys. Plasmas 14, 102504 (2007).
  • [22] B.N. Breizman, H.L. Berk, M.S. Pekker, S.D. Pinches and S.E. Sharapov, Phys. Plasmas 10, 3649 (2003).
  • [23] H.L. Berk, D.N. Borba, B.N. Breizman et al., Phys. Rev. Lett. 87, 185002 (2001).
  • [24] S.E. Sharapov, B. Alper, H.L. Berk, D.N. Borba, B.N. Breizman et al., Phys. Plasmas 9, 2027 (2002).
  • [25] S.E. Sharapov et al., Nucl. Fusion 46, S868 (2006).
  • [26] H. Kimura, S. Moriyama, M. Saigusa, Y. Kusama, T. Ozeki et al., in Fusion Energy 1996, Proceedings of the 16th International Conference, Montreal, 1996 (IAEA, Vienna, 1997), Vol. 3, p. 295.
  • [27] M. Takechi, A. Fukuyama, M. Ishikawa et al., Phys. Plasmas 12, 082509 (2005).
  • [28] M. Van Zeeland et al., Nucl. Fusion 46, S880 (2006).
  • [29] J.A. Snipes, N. Basse, C. Boswell, E. Edlund, A. Fasoli et al., Phys. Plasmas 12, 056102 (2005).
  • [30] N.A. Crocker, E.D. Fredrickson, N.N. Gorelenkov et al., Phys. Plasmas 15, 102502 (2008).
  • [31] S.D. Pinches et al., 2006 Proc. 21st Int. Conf. Fusion Energy 2006 (Chengdu, 2006) (Vienna: IAEA) CD-ROM file EX/7-2Ra and http://www-naweb.iaea.org/napc/physics/fec/fec2006/ html/index.htm
  • [32] H.L. Berk, C.J. Boswell, D. Borba et al., Nucl. Fusion 46, S888 (2006).
  • [33] R. Nazikian, G.Y. Fu, M.E. Austin, H.L. Berk, R.V. Budny et al., Phys. Rev. Lett. 101, 185001 (2008).
  • [34] G.Y. Fu, Phys. Rev. Lett. 101, 185002 (2008).
  • [35] B.N. Breizman, Proc. Theory of Fusion Plasmas: Joint Varenna-Lausanne International Workshop (Varenna, Italy, 2006) CP871.
  • [36] G.Y. Fu and H.L. Berk, Phys. Plasmas 13, 052502 (2006).
  • [37] K. Toi, F. Watanabe, T. Tokuzawa, K. Ida, S. Morita et al., Phys. Rev. Lett. 105, 145003 (2010).
  • [38] K. Toi et al., “Alfvén Eigenmodes and Geodesic Acoustic Modes Driven by Energetic Ions in an LHD Plasma with Non-monotonic Rotational Transform Profile”, 22th IAEA Fusion Energy Conference 13-18 Oct. 2009, Geneva, Switzerland. Paper No.EX/P8-4.
  • [39] K. Toi, M. Isobe, M. Osakabe, K. Ogawa, D.A. Spong, Y. Todo, Contrib. Plasma Phys. 50, 493 (2010).
  • [40] K. Toi, F. Watanabe, T. Tokuzawa, A. Shimizu, T. Ido et al., “Nonlinear Interaction between Alfvén Eigenmode and Geodesic Acoustic Mode Excited by Energetic Ions in the Large Helical Device”, European Conference Abstracts, 35th EPS Plasma Physics Conference, 9-13 June 2008, Crete, Greece, Paper No. P1.054.
  • [41] D.A. Spong et al., “Energetic Particle Physics Issues for three-dimensional toroidal configurations”, Proc. 21th IAEA FEC, 2008, Geneva, paper No.TH/3-4.
  • [42] H. Sugama and T.H, Watanabe, Phys. Plasmas 13, 012501 (2006).
  • [43] T. Watari et al., Phys. Plasmas 13, 062504 (2006).
  • [44] H.V. Wong et al., Phys. Lett. A 251, 126 (1999).
  • [45] S. Yamamoto, K. Toi, N. Nakajima, S. Ohdachi, S. Sakakibara et al., Phys. Rev. Lett. 91, 245001 (2003).
  • [46] K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D.A. Spong, A. Shimizu, M. Osakabe et al., Nucl. Fusion 50, 084005 (2010).
  • [47] K. Toi et al., “Characteristics of Energetic-Ion-Driven Geodesic Acoustic Modes in the Large Helical Device (LHD)”, 12th IAEA TM on Energetic Particles in Magnetic Confinement Systems, 7-10 Sep. 2011, Austin, USA, Paper No. O-4.
  • [48] T. Ido et al., Nucl. Fusion 51, 073046 (2011)
  • [49] T. Ido et al., “Potential fluctuation of energetic particle induced geodesic acoustic mode in the Large Helical Device”, 18th International Stellarator/Heliotron Workshop, 29 Jan.-3 Feb., 2012, Canberra, Australia, Paper No. S15-1.
  • [50] M. Osakabe et al., “Effect of energetic-particle induced n=0 instabilities to bulk-ions on LHD”, 12th IAEA TM on Energetic Particles in Magnetic Confinement Systems, 7-10 Sep. 2011, Austin, USA, Paper No. O-3.
  • [51] W.W. Heidbrink, Phys. Plasmas 15, 055501 (2008).
  • [52] Ya.I. Kolesnichenko et al., Plasma Phys. Control. Fusion 53, 024007 (2011).
  • [53] H.L. Berk, B.N. Breizman and M. Pekker, Phys. Rev. Lett. 76, 1256 (1996).
  • [54] A. Fasoli, B.N. Breizman, D. Borba et al., Phys. Rev. Lett. 81, 5564 (1998).
  • [55] R.E. Heeter, A.F. Fasoli and S.E. Sharapov, Phys. Rev. Lett. 85, 3177 (2000).
  • [56] M.K. Lilley, B.N. Breizman and S.E. Shrapov, Phys. Rev. Lett. 102, 195003 (2009).
  • [57] M. Osakabe, S. Yamamoto, K. Toi, Y. Takeiri, S. Sakakibara et al., Nucl. Fusion 46, S911 (2006).
  • [58] M. Osakabe et al., “Enhanced Radial Transport of Energetic Particles with Alfven Eigen mode on LHD”, 9th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, 9-11 November 2005, Takayama, Japan, Paper No. IT-03.
  • [59] M. Osakabe et al., “Clump and Hole formation in the energetic particle spectra by the toroidicity induced Alfven Eigenmodes and their behaviors during the mode activities”, 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, 21-23 Sep., 2009, Kiev, paper no: IT-5.
  • [60] Y. Todo, N. Nakajima, M. Osakabe et al., J. Plasma Fusion Res. 3, S1074 (2008).
  • [61] M. García-Muñoz et al., Phys. Rev. Lett. 104, 185002 (2010).
  • [62] K. Ogawa, M. Isobe, K. Toi, D.A. Spong, M. Osakabe et al., Nucl. Fusion 52, 094013 (2012).
  • [63] W.W. Heidbrink, M.A. Van Zeeland, M.E. Austin, K.H. Burrell, N.N. Gorelenkov et al., Nucl. Fusion 48, 084001 (2008).
  • [64] D.A. Spong, B.N. Breizman, D.L. Brower, E.D'Azevedo, C.B. Deng et al., Contrib. Plasma Phys. 50, 708 (2010).

This paper may be cited as follows:

Kazuo TOI, Plasma Fusion Res. 8, 1102002 (2013).