[Table of Contents]

Plasma and Fusion Research

Volume 7, 1403077 (2012)

Regular Articles


Bootstrap Current Simulations with Experimental LHD Plasma Density and Temperature Profiles, Energy Scattering and Finite Orbit Width
Maxim Yu. ISAEV, Kiyomasa Y. WATANABE1), Shinsuke SATAKE1), Yuji NAKAMURA2) and Wilfred A. COOPER3)
National Research Centre “Kurchatov Institute”, Moscow, 123182, Russia
1)
National Institute for Fusion Science, Toki 509-5292, Japan
2)
Graduate School of Energy Science, Kyoto University, Uji 611-0011, Japan
3)
Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland
(Received 6 December 2011 / Accepted 26 April 2012 / Published 26 July 2012)

Abstract

Bootstrap current calculations with the neoclassical SPBSC and VENUS+δf codes have been performed on experimental Large Helical Device (LHD, NIFS, Japan) configurations with different magnetic axis positions and simplified plasma density and temperature profiles. In this paper, we use experimentally obtained electron density and temperature profiles for the LHD discharges #61863 and #82582 to compute the corresponding magnetohydrodynamic equilibrium states and collisional frequency. An improved collisional operator has been implemented into the VENUS+δf code. The comparison between the measured LHD bootstrap current and that expected from neoclassical simulations is discussed.


Keywords

heliotron, stellarator, magnetic configuration, neoclassical transport, bootstrap current, 3D numerical orbit, δf method

DOI: 10.1585/pfr.7.1403077


References

  • [1] K.Y. Watanabe et al., Nucl. Fusion 35, 335 (1995).
  • [2] K. Shaing and J. Callen, Phys. Fluids 26, 3315 (1983).
  • [3] K.Y. Watanabe et al., J. Plasma Fusion Res. SERIES 5, 124 (2002).
  • [4] W.A. Cooper et al., Plasma Phys. Control. Fusion 44, 1 (2002).
  • [5] D.V. Anderson et al., J. Supercomput. Appl. 4, 34 (1990).
  • [6] A.H. Boozer, Phys. Fluids 24, 1999 (1981).
  • [7] M. Murakami et al., Phys. Rev. Lett. 66, 707 (1991).
  • [8] H. Maaβberg et al., Plasma Phys. Control. Fusion 47, 1137 (2005).
  • [9] W.I. Van Rij and S.P. Hirshman, Phys. Fluids B 1, 563 (1989).
  • [10] C.D. Beidler et al., Proc. 30th EPS Conf. on Control. Fusion and Plasma Phys. (St. Petersburg, Russia 2003) ECA 27A, P3.2 (2003).
  • [11] Y. Ogawa et al., Nucl. Fusion 32, 119 (1992).
  • [12] M.Yu. Isaev et al., Fusion Sci. Technol. 50, 440 (2006).
  • [13] A.H. Boozer and G. Kuo-Petravic, Phys. Fluids 24, 851 (1981).
  • [14] C.D. Beidler et al., Proc. 22nd IAEA Fusion Energy Conf., Geneva, Switzerland, TH/P8-10 (2008).
  • [15] K. Allmaier et al., CDROM with Proc. of Joint Conf. of 17th Int. Toki Conf. on Physics of Flow and Turbulence in Plasmas and 16th Int. Stellarator/Heliotron Workshop, 615 (2007).
  • [16] C.D. Beidler et al., Nucl. Fusion 51, 076001 (2011).
  • [17] M.Yu. Isaev et al., Plasma Fusion Res. 3, 036 (2008).
  • [18] M.Yu. Isaev et al., Nucl. Fusion 49, 075013 (2009).
  • [19] S. Satake et al., Plasma Fusion Res. 3, S1062 (2008).
  • [20] Y. Nakamura et al., Proc. 22nd IAEA Fusion Energy Conf Geneva Switzerland EX/P6-20 (2008).
  • [21] O. Fischer et al., Nucl. Fusion 42, 817 (2002).
  • [22] R. Sanchez et al., Comput. Phys. Commun. 141, 55 (2001).
  • [23] W.X. Wang et al., Plasma Phys. Control. Fusion 41, 1091 (1999).
  • [24] A. Bergmann et al., Phys. Plasmas 8, 5192 (2001).
  • [25] T. Vernay et al., Phys. Plasmas 17, 122301 (2010).
  • [26] R.A. Kolesnikov et al., J. Comput. Phys. 229, 5564 (2010).
  • [27] H. Maaβberg and C.D. Beidler, Phys. Plasmas 17, 052507 (2010).
  • [28] K. Allmaier et al., Phys. Plasmas 15, 072512 (2008).
  • [29] J.L. Velasco et al., Plasma Phys. Control. Fusion 53, 115014 (2011).
  • [30] V. Tribaldos et al., Phys. Plasmas 18, 102507 (2011).

This paper may be cited as follows:

Maxim Yu. ISAEV, Kiyomasa Y. WATANABE, Shinsuke SATAKE, Yuji NAKAMURA and Wilfred A. COOPER, Plasma Fusion Res. 7, 1403077 (2012).