[Table of Contents]

Plasma and Fusion Research

Volume 6, 2405062 (2011)

Regular Articles


Interstitial Diffusion of C Interacting with Ambient H in Tungsten Crystals
Daiji KATO, Hirotomo IWAKIRI1), Kazunori MORISHITA2) and Takeo MUROGA
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
1)
University of the Ryukyus, Okinawa 903-0213, Japan
2)
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
(Received 22 December 2010 / Accepted 12 April 2011 / Published 1 July 2011)

Abstract

Negative binding energies between interstitial C (octahedral) and H (tetrahedral) in a bulk crystal of W (bcc) were obtained with the first-principle calculations, which indicate repulsive interaction in the interstitial C-H pair. The electron cloud associated to the each interstitial atom was analyzed with Bader's method. This analysis gives negative fractional charges of −0.35 and −0.37 for the interstitial C and H, respectively, supporting the repulsive interaction between them. Interstitial diffusion of C was studied including influences of ambient H atoms in the mean field approximation and the ergodic assumption. The calculated diffusion coefficients are significantly increased by the repulsive interaction with the H atoms.


Keywords

diffusion coefficient, interstitial atom, hydrogen, carbon, tungsten, material-mixing, first-principle method

DOI: 10.1585/pfr.6.2405062


References

  • [1] G.C. Lie, J. Hinze and B. Liu, J. Chem. Phys. 59, 1872 (1973).
  • [2] M.W. Chase, Jr., NIST-JANAF Thermochemical Tables, Fourth edition, J. Phys. Chem. Ref. Data, Monograph No. 9 (AIP, Washington D.C., 1998).
  • [3] D. Hildebrandt et al., J. Nucl. Mater. 266-269, 532 (1999).
  • [4] e.g. V. Kh. Alimov et al., J. Nucl. Mater. 375, 192 (2008).
  • [5] R.J. Elliott, Atomic Diffusion in Disordered Materials: Theory and Applications (World Scientific, Singapore, 1998) Chapter 1.
  • [6] R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry 16 (Oxford Univ. Press, USA, 1994).
  • [7] J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  • [8] P.E. Blöchl, Phys. Rev. B 50, 17953 (1994); P.E. Blöchl, C.J. Först and J. Schimpl, Bull. Mater. Sci. 26, 33 (2003).
  • [9] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  • [10] C.S. Becquart and C. Domain, J. Nucl. Mater. 386-388, 109 (2009).
  • [11] R.F.W. Bader, Phys. Rev. B 49, 13348 (1994).
  • [12] R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
  • [13] G. Mills, H. Jonsson and K.W. Schenter, Surf. Sci. 324, 305 (1995).
  • [14] A. Shepela, J. Less Common Met. 26, 325 (1972).
  • [15] K. Rawlings, S. Foulias and B. Hopkins, Surf. Sci. 109, 513 (1981).
  • [16] M. Poon et al., J. Nucl. Mater. 313-316, 199 (2003).

This paper may be cited as follows:

Daiji KATO, Hirotomo IWAKIRI, Kazunori MORISHITA and Takeo MUROGA, Plasma Fusion Res. 6, 2405062 (2011).