[Table of Contents]

Plasma and Fusion Research

Volume 6, 2402073 (2011)

Regular Articles


Dependence of EC-Driven Current on the EC-Wave Beam Direction in LHD
Yasuo YOSHIMURA, Shin KUBO, Takashi SHIMOZUMA, Hiroe IGAMI, Hiromi TAKAHASHI, Masaki NISHIURA, Satoru SAKAKIBARA, Kenji TANAKA, Kazumichi NARIHARA, Takashi MUTOH, Hiroshi YAMADA, Kazunobu NAGASAKI1), Nikolai B. MARUSHCHENKO2) and Yuri TURKIN2)
National Institute for Fusion Science, Toki 509-5292, Japan
1)
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
2)
Max-Planck-Institut for Plasmaphysik, EURATOM Association, TI Greifswald, Germany
(Received 27 December 2010 / Accepted 29 March 2011 / Published 1 July 2011)

Abstract

Electron cyclotron current drive (ECCD) experiments were conducted in the Large Helical Device to investigate the characteristics of EC-driven current and its profile and the possibility of controlling current and rotational transform profiles by ECCD. Successful ECCD helps prevent magnetohydrodynamic instabilities in plasmas. Scanning the EC-wave beam direction with a long pulse width of 8 s revealed a systematic change in the plasma current. The current's direction was reversed by a reversal of the beam direction. The direction agrees with the prediction of Fisch-Boozer theory regarding EC-wave beam injection from low-field side. The maximum driven current is 9 kA with an EC-wave power of 100 kW. The optimum beam direction that maximizes the driven current is investigated with the help of ray-tracing code. This direction depends on the magnetic field, efficiency of power absorption, and fraction of the power absorbed by trapped electrons.


Keywords

ECCD, electron cyclotron current drive, plasma current, LHD, TRAVIS

DOI: 10.1585/pfr.6.2402073


References

  • [1] V. Erckmann and U. Gasparino, Plasma Phys. Control. Fusion 36, 1869 (1994).
  • [2] B. Lloyd, Plasma Phys. Control. Fusion 40, A119 (1998).
  • [3] R. Prater, Phys. Plasmas 11, 2349 (2004).
  • [4] H. Zohm et al., Nucl. Fusion 39, 577 (1999).
  • [5] R. Prater et al., Nucl. Fusion 47, 371 (2007).
  • [6] A.C.C. Sips et al., Nucl. Fusion 47, 1485 (2007).
  • [7] A. Isayama et al., Nucl. Fusion 49, 055006 (2009).
  • [8] H. Maassberg et al., Plasma Phys. Control. Fusion 47, 1137 (2005).
  • [9] G. Motojima et al., Nucl. Fusion 47, 1045 (2007).
  • [10] K. Nagasaki et al., Plasma Fusion Res. 3, S1008 (2008).
  • [11] K. Nagasaki et al., Nucl. Fusion 50, 025003 (2010).
  • [12] K. Nagasaki et al., Proc. 23rd IAEA Fusion Energy Conference (2010) EXW/P7-19.
  • [13] Y. Yoshimura et al., Journal of Korean Physical Society 49, S197 (2006).
  • [14] Y. Yoshimura et al., Fusion Sci. Technol. 53, 54 (2008).
  • [15] T. Notake et al., Plasma Fusion Res. 3, S1077 (2008).
  • [16] Y. Yoshimura et al., Fusion Sci. Technol. 58, 551 (2010).
  • [17] S. Sakakibara et al., Plasma Fusion Res. 1, 003 (2006).
  • [18] K.Y. Watanabe et al., Fusion Sci. Technol. 46, 24 (2004).
  • [19] N.B. Marushchenko et al., Nucl. Fusion 48, 054002 (2008); Marushchenko et al., Nucl. Fusion 49, 129801 (2009).
  • [20] O. Motojima et al., Phys. Plasmas 6, 1843 (1999).
  • [21] N.J. Fisch and A.H. Boozer, Phys. Rev. Lett. 45, 720 (1980).
  • [22] K.Y. Watanabe et al., Nucl. Fusion 41, 63 (2001).
  • [23] T.C. Luce et al., Phys. Rev. Lett. 83, 4550 (1999).

This paper may be cited as follows:

Yasuo YOSHIMURA, Shin KUBO, Takashi SHIMOZUMA, Hiroe IGAMI, Hiromi TAKAHASHI, Masaki NISHIURA, Satoru SAKAKIBARA, Kenji TANAKA, Kazumichi NARIHARA, Takashi MUTOH, Hiroshi YAMADA, Kazunobu NAGASAKI, Nikolai B. MARUSHCHENKO and Yuri TURKIN, Plasma Fusion Res. 6, 2402073 (2011).