[Table of Contents]

Plasma and Fusion Research

Volume 6, 2401052 (2011)

Regular Articles


Simulation of the Fuel Isotope Effect on the Confinement Property in DT Fusion Reactors
Tetsutarou OISHI, Kozo YAMAZAKI, Yoshihito HORI and Hideki ARIMOTO
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
(Received 8 December 2010 / Accepted 31 March 2011 / Published 12 July 2011)

Abstract

To sustain deuterium (D) - tritium (T) burning plasmas efficiently and to reduce T fuel injection into magnetic confinement fusion reactors, the amount and the ratio of D and T both in the bulk plasmas and in the fueling systems should be controlled accurately. In order to analyze the relationship among fueling methods, the D/T fuel ratio, and reactor output power numerically, we applied the toroidal transport analysis linkage (TOTAL) equilibrium-transport integrated simulation code to model the fuel supply in D-T burning plasmas. It was revealed that operation with a lower tritium ratio in the fuel pellet and a higher electron density can reduce the T fuel injection. The isotope effect of the ion mass on the confinement property was also investigated. As a preliminary result, a concern emerged that the improved confinement of helium ions causes an unintended increase of the electron density, if the particle diffusion coefficient of the ions has a negative correlation with the ion mass.


Keywords

tokamak, D/T fuel ratio, burning plasma, pellet injection, tritium consumption, transport analysis, integrated simulation code, isotope effect

DOI: 10.1585/pfr.6.2401052


References

  • [1] R. J. Hawryluk, J. Plasma Fusion Res. SERIES 5, 12 (2002).
  • [2] ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database, Nuclear Fusion 39, 2175 (1999).
  • [3] K. Yamazaki and T. Amano, Nucl. Fusion 32, 633 (1992).
  • [4] K. Yamazaki et al., Nucl. Fusion 25, 1543 (1985).
  • [5] S. P. Hirshman et al., Comput. Phys. Commun. 43, 143 (1986).
  • [6] M. Erba et al., Plasma Phys. Control. Fusion 39, 261 (1997).
  • [7] Y. B. Kim et al., Phys. Fluids B 3, 384 (1991).
  • [8] A. L. Rogister, Nucl. Fusion 41, 1101 (2001).
  • [9] Y. Higashiyama et al., Plasma Fusion Res. 3, S1048 (2008).
  • [10] T. S. Harm and K. H. Burrell, Phys. Plasmas 2, 1648 (1995).
  • [11] F. L. Hinton and G. M. Staebler, Phys. Fluids B 5, 1281 (1993).
  • [12] T. Fujita et al., Phys. Rev. Lett. 78, 2377 (1997).
  • [13] K. Yamazaki et al., Fusion Eng. Des. 81, 2743 (2006).
  • [14] L. R. Bayler et al., Fusion Technol. 34, 425 (1998).
  • [15] A. R. Polevoi and M. Shimada, Plasma Phys. Control. Fusion 43, 1525 (2001).
  • [16] P. Parks et al., Nucl. Fusion 17, 539 (1977).

This paper may be cited as follows:

Tetsutarou OISHI, Kozo YAMAZAKI, Yoshihito HORI and Hideki ARIMOTO, Plasma Fusion Res. 6, 2401052 (2011).