[Table of Contents]

Plasma and Fusion Research

Volume 6, 1403002 (2011)

Regular Articles


On Detection of a Global Mode Structure in Experiments by Use of Turbulence Diagnostic Simulator
Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI1,2), Kimitaka ITOH and Sanae-I ITOH1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
1)
Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580, Japan
2)
Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193, Japan
(Received 27 July 2010 / Accepted 18 November 2010 / Published 8 February 2011)

Abstract

Development of experimental diagnostics in fusion plasmas has made possible to measure plasma fluctuations with high spatial and temporal resolution. To detect a global mode, which contributes to global transport phenomena, it is helpful to use simulation data as a test field for the measurements. The turbulence diagnostic simulator is an assembly of codes for turbulence simulations and numerical diagnostics. Using the turbulence diagnostic simulator, a time series of turbulence data is obtained, on which numerical diagnostics are carried out to demonstrate how global modes to be observed. There exist modes, which are broad in the radial direction, and correlation analyses reveal the characteristic structures with a finite number of local observations in the radial direction, as in experiments.


Keywords

turbulence simulation, structural formation, numerical diagnostic, fluctuation measurement, nonlocal transport

DOI: 10.1585/pfr.6.1403002


References

  • [1] See reviews, e.g. P.H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).
  • [2] A. Yoshizawa, S.-I. Itoh and K. Itoh, Plasma and Fluid Turbulence (IOP Publishing, Bristol, 2003).
  • [3] P.H. Diamond and T.S. Hahm, Phys. Plasmas 2, 2292 (1995).
  • [4] S.-I. Itoh and K. Itoh, Plasma Phys. Control. Fusion 43, 1055 (2001).
  • [5] A. Fujisawa, Nucl. Fusion 49, 013001 (2009).
  • [6] G.R. Tynan, A. Fujisawa and G. McKee, Plasma Phys. Control. Fusion 51, 113001 (2009).
  • [7] T. Yamada, S.-I. Itoh, T. Maruta, N. Kasuya, Y. Nagashima, S. Shinohara, K. Terasaka, M. Yagi, S. Inagaki, Y. Kawai, A. Fujisawa and K. Itoh, Nature Phys. 4, 721 (2008).
  • [8] G.Y. Antar, J.H. Yu and G. Tynan, Phys. Plasmas 14, 022301 (2007).
  • [9] T. Windisch, O. Grulke and T. Klinger, Phys. Plasmas 13, 122303 (2006).
  • [10] P.A. Politzer, Phys. Rev. Lett. 84, 1192 (2000).
  • [11] G.D. Conway, Plasma Phys. Control. Fusion 50, 124026 (2008).
  • [12] T. Ido, A. Shimizu, M. Nishiura, H. Nakano, S. Kato, S. Ohshima, Y. Yoshimura, S. Kubo, T. Shimozuma, H. Igami, H. Takahashi, K. Toi, F. Watanabe, K. Narihara and I. Yamada, Plasma Sci Technol. 11, 460 (2009).
  • [13] S. Inagaki, T. Tokuzawa, K. Itoh, K. Ida, S.-I. Itoh, N. Tamura, S. Sakakibara, N. Kasuya, A. Fujisawa, S. Kubo, T. Shimozuma, T. Ido, S. Nishimura, H. Arakawa, T. Kobayashi, K. Tanaka, Y. Nagayama, K. Kawahata, S. Sudo, H. Yamada, A. Komori and LHD Experimental Group, submitted to Phys. Rev. Lett.
  • [14] N. Kasuya, S. Nishimura, M. Yagi, K. Itoh, S.-I. Itoh and N. Ohyabu, J. Plasma Fusion Res. SERIES 9, 523 (2010).
  • [15] S. Nishimura, N. Kasuya, M. Yagi, K. Itoh, S.-I. Itoh and N. Ohyabu, Plasma Fusion Res. 5, S2057 (2010).
  • [16] N. Kasuya, M. Yagi, K. Itoh and S.-I. Itoh, Phys. Plasmas 15, 052302 (2008).
  • [17] J.M. Green and J.L. Johnson, Phys. Fluids 4, 875 (1961).
  • [18] M. Wakatani, Stellarator and Heliotron Devices (Oxford University Press, Oxford 1998).

This paper may be cited as follows:

Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH and Sanae-I ITOH, Plasma Fusion Res. 6, 1403002 (2011).