[Table of Contents]

Plasma and Fusion Research

Volume 6, 1402111 (2011)

Regular Articles


Electron Density Profile Behavior during SMBI Measured with AM Reflectometer in Heliotron J Plasma
Kiyofumi MUKAI, Kazunobu NAGASAKI1), Tohru MIZUUCHI1), Vladimir ZHURAVLEV2), Shinsuke OHSHIMA3), Takeshi FUKUDA4), Takashi MINAMI1), Hiroyuki OKADA1), Shinji KOBAYASHI1), Satoshi YAMAMOTO1), Yuji NAKAMURA, Kiyoshi HANATANI1), Shigeru KONOSHIMA1), Masaki TAKEUCHI1), Koji MIZUNO, Hyunyong LEE and Fumimichi SANO1)
Graduate School of Energy Science, Kyoto University, Gokasho, Uji 611-0011, Japan
1)
Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
2)
RRC “Kurchatov Institute”, Institute of Nuclear Fusion, Moscow 123182, Russia
3)
Pioneering Research Unit for Next Generation, Kyoto University, Gokasho, Uji 611-0011, Japan
4)
Center for Atomic and Molecular Technologies, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
(Received 19 March 2011 / Accepted 31 May 2011 / Published 27 July 2011)

Abstract

The electron density profile was measured using a microwave amplitude modulation (AM) reflectometer in Heliotron J plasmas, where plasma performance was improved using supersonic molecular beam injection (SMBI) as a fueling method. Immediately after the SMBI pulse, for the case in which the supersonic molecular beam penetrates deeply, the density profile rapidly peaks, and the electron density increases in both core and edge regions. Afterward, while the line-averaged electron density is monotonically increasing, the density profile becomes more peaked. In this phase, the edge electron density measured by a Langmuir probe decreases and the peaking factor of the SX profiles measured by an absolute extreme ultraviolet array increases. These trends are consistent with the electron density trend determined by the AM reflectometer. SMBI affects particle confinement and transport, thus possibly increasing plasma stored energy.


Keywords

density profile, reflectometer, SMBI, fueling control, particle confinement, Heliotron J

DOI: 10.1585/pfr.6.1402111


References

  • [1] L. Yao, New Developments in Nuclear Fusion Research (Nova Sci. Pub, 2006) pp.61-87.
  • [2] T. Mizuuchi et al., Contrib. Plasma Phys. 50, 639 (2010).
  • [3] J. Sanchez et al., Rev. Sci. Instrum. 63, 4654 (1992).
  • [4] V. Zhuravlev, Proc. 26th EPS Conf. on Controlled Fusion and Plasma Phys. (Maastricht, 1999) Vol. 23J, p857.
  • [5] M. Hirsch et al., Rev. Sci. Instrum. 67, 1807 (1996).
  • [6] T. Estrada et al., Plasma Phys. Control. Fusion 43, 1535 (2001).
  • [7] W.W. Xiao et al., Plasma Sci. Technol. 8, 133 (2006).
  • [8] W.W. Xiao et al., Phys. Rev. Lett. 104, 215001 (2010).
  • [9] W.W. Xiao et al., Rev. Sci. Instrum. 81, 013506 (2010).
  • [10] K. Mukai et al., Contrib. Plasma Phys. 50, 646 (2010).
  • [11] T. Obiki et al., Nucl. Fusion 41, 833 (2001).
  • [12] T. Mizuuchi et al., in Proc. 19th PSI Conference (San Diego, 2010) P2-70. To be published in J. Nucl. Mater.

This paper may be cited as follows:

Kiyofumi MUKAI, Kazunobu NAGASAKI, Tohru MIZUUCHI, Vladimir ZHURAVLEV, Shinsuke OHSHIMA, Takeshi FUKUDA, Takashi MINAMI, Hiroyuki OKADA, Shinji KOBAYASHI, Satoshi YAMAMOTO, Yuji NAKAMURA, Kiyoshi HANATANI, Shigeru KONOSHIMA, Masaki TAKEUCHI, Koji MIZUNO, Hyunyong LEE and Fumimichi SANO, Plasma Fusion Res. 6, 1402111 (2011).