[Table of Contents]

Plasma and Fusion Research

Volume 6, 1401010 (2011)

Regular Articles


Spectroscopic Diagnostic of Helium-Hydrogen RF Plasma under the Influence of Radiation Trapping
Keiji SAWADA, Motoshi GOTO1) and Naomichi EZUMI2)
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
1)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)
Nagano National College of Technology, 716 Tokuma, Nagano 381-8550, Japan
(Received 18 May 2010 / Accepted 26 December 2010 / Published 28 February 2011)

Abstract

The electron temperature and density, atomic hydrogen density and temperature in a helium-hydrogen RF plasma are determined from the visible emission line intensities of both atoms by considering photoexcitation from the ground state accompanied by radiation trapping in the plasma. From the observed helium line intensity, and the hydrogen Balmer γ line intensity which is little affected by photoexcitation, parameters other than the atomic hydrogen temperature are determined using a helium atom collisional-radiative model [Sawada et al., Plasma Fusion Res. 5, 001 (2010)], which includes photoexcitation for helium singlet P states, and a hydrogen atom collisional-radiative model in which photoexcitation is ignored. The atomic hydrogen temperature is determined to reproduce the Balmer α and β line intensities by using an iterative hydrogen atom collisional-radiative model [Sawada, J. Plasma Phys. 72, 1025 (2006)] that calculates the photoexcitation rates.


Keywords

radiation trapping, helium-hydrogen plasma, collisional-radiative model, spectroscopic diagnostic

DOI: 10.1585/pfr.6.1401010


References

  • [1] K. Sawada, J. Plasma Phys. 72, 1025 (2006).
  • [2] K. Sawada, Y. Yamada, T. Miyachika, N. Ezumi, A. Iwamae and M. Goto, Plasma Fusion Res. 5, 001 (2010).
  • [3] T. Fujimoto, Plasma Spectroscopy (The International Series of Monographs on Physics, 123, Oxford University Press, 2004).
  • [4] T. Fujimoto, JQSRT 21, 439 (1978).
  • [5] M. Goto, JQSRT 76, 331 (2003).
  • [6] M. Goto, S. Morita, K. Sawada, T. Fujimoto and S. Yamamoto, Phys. Plasmas 10, 1402 (2003).
  • [7] D.V. Fursa and I. Bray, Phys. Rev. A 52, 1279 (1995).
  • [8] I. Bray and D.V. Fursa, J. Phys. B 28, L197 (1995).
  • [9] D.V. Fursa and I. Bray, J. Phys. B 30, 757 (1997).
  • [10] K. Bartschat, J. Phys. B 31, L469 (1998).
  • [11] K. Sawada and T. Fujimoto, Phys. Rev. E 49, 5565 (1994).
  • [12] T. Fujimoto, S. Miyachi and K. Sawada, Nucl. Fusion 28, 1255 (1988).
  • [13] H. Anderson, C.P. Ballance, N.R. Badnell and H.P. Summers, J. Phys. B 33, 1255 (2000); Anderson, Ballance, Badnell and Summers, J. Phys. B 35, 1613 (2002).
  • [14] T. Fujimoto, K. Sawada and K. Takahata, J. Appl. Phys. 66, 2315 (1989).
  • [15] T. Fujimoto, K. Sawada, K. Takahata, K. Eriguchi, H. Suemitsu, K. Ishii, R. Okasaka, H. Tanaka, T. Maekawa, Y. Terumichi and S. Tanaka, Nucl. Fusion 29, 1519 (1989).
  • [16] K. Sawada, K. Eriguchi and T. Fujimoto, J. Appl. Phys. 73, 8122 (1993).
  • [17] K. Sawada, Report on Grant-in-Aid for scientific research No.15540470 (2007) [in Japanese].
  • [18] G.R. Möhlmann and F.J. de Heer, Chem. Phys. Letters 43, 240 (1976).
  • [19] S.I. Krasheninnikov, A.Yu. Pigarov and D.J. Sigmar, Phys. Lett. A 214, 285 (1996).
  • [20] K. Sawada and T. Fujimoto, Contrib. Plasma Phys. 42, 603 (2002).
  • [21] B.J. Wood and H. Wise, J. Phys. Chem. 66, 1049 (1962).

This paper may be cited as follows:

Keiji SAWADA, Motoshi GOTO and Naomichi EZUMI, Plasma Fusion Res. 6, 1401010 (2011).