[Table of Contents]

Plasma and Fusion Research

Volume 6, 1306006 (2011)

Letters


Efficient Fusion Neutron Generation Using a 10-TW High-Repetition Rate Diode-Pumped Laser
Yoneyoshi KITAGAWA, Yoshitaka MORI, Ryohei HANAYAMA, Shinichiro OKIHARA, Kazuhisa FUJITA, Katsuhiro ISHII, Toshiyuki KAWASHIMA1), Nakahiro SATO1), Takashi SEKINE1), Ryo YASUHARA1), Masaru TAKAGI1), Naoki NAKAMURA2), Yasushi MIYAMOTO2), Hirozumi AZUMA3), Tomoyoshi MOTOHIRO3), Tatsumi HIOKI3) and Hirofumi KAN1)
The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu 431-1202, Japan
1)
Development Bureau, Hamamatsu Photonics K.K., 1820 Kurematsu-cho, Nishi-ku, Hamamatsu 431-1202, Japan
2)
Advanced Material Engineering Div., TOYOTA Motor Corporation, 1200 Mishuku, Susono 410-1193, Japan
3)
TOYOTA Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-cho, Aichi 480-1192, Japan
(Received 7 July 2010 / Accepted 18 October 2010 / Published 8 February 2011)

Abstract

The first use of a high-repetition-rate laser-diode (LD)-pumped laser in a fusion target experiment is demonstrated. An LD-pumped Nd-solid state laser's output is coupled to a Ti:sapphire laser, enabling the resulting HAMA laser to generate 2-J, 815-nm-wavelength output with a pulse width of 150 fs and a repetition rate of 10 Hz. A photon-to-photon efficiency of 1.25% (electric-to-photonic 0.7%) is achieved, which is an order of magnitude higher than that of current flash-lamp lasers. Irradiation of a 500-µm-thick deuterated polystyrene film by a 0.6-J pulse yielded 105 DD fusion neutrons. The efficiency from the electric input to the neutron yield is 10 times higher than the flash-lamp-pumped table-top lasers.


Keywords

laser-diode(LD)- pumped laser, ICF roadmap, DD fusion neutron, neutron source

DOI: 10.1585/pfr.6.1306006


References

  • [1] J.D. Lindl, Inertial Confinement Fusion, The Quest for Ignition and Energy Gain Using Indirect Drive (Springer-Verlag New York, Inc. 1998).
  • [2] S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford Science Publications, 2004).
  • [3] S.A. Payne et al., J. Fusion Energy 17, 213 (1998).
  • [4] T. Kurita et al., Trans. IEE Japan C, Electronics, Inf. and Sys. Soc. 128, 707 (2008).
  • [5] R. Yasuhara et al., Opt. Lett. 33, 1711 (2008).
  • [6] J. Caird, “Status of DPSSL Development” (UCRL-PRES224727 Fusion Power Associates, Annual Meeting and Symposium Fusion: Pathways to the Future) Sept. 27-28 (2006).
  • [7] Y. Kitagawa et al., Phys. Rev. E 71, 016403 (2005).
  • [8] T. Ditmire et al., Nature 398, 489 (1999).
  • [9] G. Pretzler et al., Phys. Rev. E 58, 1165 (1998).
  • [10] D. Hilscher et al., Phys. Rev. E 64, 016414 (2001).
  • [11] J. Coutant et al., Energy from Inertial Fusion, Ch. 5, Inertial fusion energy development strategy (edited by Hogan, W.J., IAEA, Vienna, Austria, 1995).
  • [12] W.J. Hogan, Energy from Inertial Fusion, Ch. 3, IFE Power Plant Design Principles (edited by Hogan, W. J., IAEA, Vienna, Austria, 1995).
  • [13] S. Atzeni, Plasma Phys. Control. Fusion 51, 124029 (2009).
  • [14] H. Yoshida et al., Opt. Lett. 28, 257 (2003).
  • [15] Y. Kitagawa et al., IEEE J. Quantum Electronics 40, 281 (2004).
  • [16] T. Elevant, Nucl. Instrum. Method 185, 313 (1981).
  • [17] S. Karsh, High-intensity laser generated neutrons: A novel neutron source and new tool for plasma diagnostics (Dissertation, Ludwig-Maximilians Universität München, 2002).
  • [18] S.C. Wilks et al., Phys. Rev. Lett. 69, 1383 (1992).

This paper may be cited as follows:

Yoneyoshi KITAGAWA, Yoshitaka MORI, Ryohei HANAYAMA, Shinichiro OKIHARA, Kazuhisa FUJITA, Katsuhiro ISHII, Toshiyuki KAWASHIMA, Nakahiro SATO, Takashi SEKINE, Ryo YASUHARA, Masaru TAKAGI, Naoki NAKAMURA, Yasushi MIYAMOTO, Hirozumi AZUMA, Tomoyoshi MOTOHIRO, Tatsumi HIOKI and Hirofumi KAN, Plasma Fusion Res. 6, 1306006 (2011).