[Table of Contents]

Plasma and Fusion Research

Volume 6, 1106011 (2011)

Review Articles


Nano-Bio Fusion Science Opened and Created with Plasmas
Rikizo HATAKEYAMA1) and Toshiro KANEKO1,2)
1)
Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan
2)
CREST/JST, Tokyo 102-0075, Japan
(Received 24 December 2010 / Accepted 4 February 2011 / Published 4 March 2011)

Abstract

Recent years have brought about a rapid rise in research on applications in biological and medical fields including cell and tissue inactivation, sterilization and disinfection, blood coagulation, therapy, surgery, pharmaceuticals, biosensing, and biochips by exploiting low-pressure, atmospheric-pressure, and solution plasma processes. Many of the basic constituent materials of biological organisms are nanometer-scale in size, thus presenting the possibility of a growing field of science and technology focused on a fusion between “bio” and “nano” mechanisms; we are now in the germinal stage of a new era of next-generation applied research in the biological and medical applications of nanocarbons typified by fullerenes and carbon nanotubes. In this context, the authors have proposed and implemented research utilizing nanoscopic processes in advanced gas, liquid, and gas-liquid interfacial plasmas, directed toward the creation of synthetic materials and devices composed of nanocarbons, nanoparticles, and biomolecules. This research is positioned to advance the establishment of nano-bio fusion science opened and created with plasmas to construct next-generation nanobio and medical systems relating to nanobio-electronics devices, intracellular nanoengineering, and nanomedicine.


Keywords

plasmas for nano-bio fusion, gas/liquid/interface, nanocarbon, nanoparticle, biomolecule

DOI: 10.1585/pfr.6.1106011


References

  • [1] M. Inagaki and T. Kameyama, J. Plasma Fusion Res. 83, 595 (2007).
  • [2] N. Philip, B Saoudi, M.C. Crevier, M. Moisan, J. Barbeau and J. Pelletier, IEEE Trans. Plasma Science 30, 1429 (2002).
  • [3] M. Nagatsu, F. Terashita, H. Nonaka, L. Xu, T. Nagata and Y. Koide, Appl. Phys. Lett. 86, 211502 (2005).
  • [4] H. Eto, Y. Ono, A. Ogino and M. Nagatsu, Appl. Phys. Lett. 93, 221502 (2008).
  • [5] J.L. Walsh, J.J. Shi and M.G. Kong, Appl. Phys. Lett. 88, 171501 (2006).
  • [6] Z. Cao, J.L. Walsh and M.G. Kong, Appl. Phys. Lett. 94, 021501 (2009).
  • [7] G. Fridman, M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A. Gutsol, A. Brooks and G. Friedman, Plasma Chem. Plasma Process 26, 425 (2006).
  • [8] J. Raiser and M. Zenker, J. Phys. D: Appl. Phys. 39, 3520 (2006).
  • [9] K.R. Stalder, D. McMillen and J. Woloszko, J. Phys. D: Appl Phys. 38, 1728 (2005).
  • [10] M. Prato, K. Kostarelos and A. Bianco, Acc. Chem. Res. 41, 60 (2008).
  • [11] T. Kato and R. Hatakeyama, J. Am. Chem. Soc. 130, 8101 (2008).
  • [12] H. Jin, D.A. Heller and M.S. Strano, Nano Lett. 8, 1577 (2008).
  • [13] Y. Wu, J.A. Phillips, H. Liu, R. Yang and W. Tan, ACS Nano 2, 2023 (2008).
  • [14] K. Ajima, T. Murakami, Y. Mizoguchi, K. Tsuchida, T. Ichihashi, S. Iijima and M. Yudasaka, ACS Nano 2, 2057 (2008).
  • [15] K.M. Kadish and R.S. Ruoff Eds., Fullernes (John Wiley & Sons, Inc., New York, 2000) p.437.
  • [16] M. Mikawa, H. Kato, M. Okumura, M. Narazaki, Y. Kanazawa, N. Miwa and H. Shinohara, Bioconjugate Chem. 12, 510 (2001).
  • [17] S. Miyanaga, T. Kaneko, H. Ishida and R. Hatakeyama, Thin Solid Films 518, 3509 (2010).
  • [18] T. Kato and R. Hatakeyama, Appl. Phys. Lett. 92, 031502 (2008).
  • [19] R. Hatakeyama, T. Kaneko, W. Oohara, Y.F. Li, T. Kato, K. Baba and J. Shishido, Plasma Sources Sci. Technol. 17, 024009 (2008).
  • [20] S.H. Kim, W.I. Choi, G. Kim, Y.J. Song, G.-H. Jeong, R. Hatakeyama, J. Ihm and Y. Kuk, Phy. Rev. Lett. 99, 256407 (2007).
  • [21] G.-H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, N. Sato and Y. Kawazoe, Appl. Phys. Lett. 79, 4213 (2001).
  • [22] G.-H. Jeong, A.A. Farajian, R. Hatakeyama, T. Hirata, T. Yaguchi, K. Tohji, H. Mizuseki and Y. Kawazoe, Phys. Rev. B 68, 075410 (2003).
  • [23] T. Kato, R. Hatakeyama, J. Shishido, W. Oohara and K. Tohji, Appl. Phys. Lett. 95, 083109 (2009).
  • [24] T. Kaneko, T. Okada and R. Hatakeyama, Contrib. Plasma Phys. 47, 57 (2007).
  • [25] M. Washizu and T.B. Jones, J. Electrostatics 38, 199 (1996).
  • [26] T. Okada, T. Kaneko, R. Hatakeyama and K. Tohji, Chem. Phys. Lett. 417, 288 (2006).
  • [27] K.H. Yoo, D.H. Ha, J.O. Lee, J.W. Park, J. Kim, H.Y. Lee, T. Kawai and H.T. Choi, Phys. Rev. Lett. 87, 198102 (2001).
  • [28] T. Kaneko and R. Hatakeyama, Appl. Phys. Express 2, 127001 (2009).
  • [29] Y.F. Li, T. Kaneko and R. Hatakeyama, Small 6, 729 (2010).
  • [30] Y.F. Li, T. Kaneko, Y. Hirotsu and R. Hatakeyama, Small 6, 27 (2010).
  • [31] Y.F. Li, T. Kaneko and R. Hatakeyama, Appl. Phys. Lett. 96, 023104 (2010).
  • [32] K.R. Seddon, Nature Mater. 2, 363 (2003).
  • [33] K. Baba, T. Kaneko and R. Hatakeyama, Appl. Phys. Lett. 90, 201501 (2007).
  • [34] T. Kaneko, K. Baba and R. Hatakeyama, J. Appl. Phys. 105, 103306 (2009).
  • [35] K. Baba, T. Kaneko and R. Hatakeyama, Appl. Phys. Express 2, 035006 (2009).
  • [36] T. Kaneko, K. Baba, T. Harada and R. Hatakeyama, Plasma Process. Polym. 6, 713 (2009).
  • [37] K. Baba, T. Kaneko, R. Hatakeyama, K. Motomiya and K. Tohji, Chem. Commun. 46, 255 (2010).
  • [38] F.N. Ishikawa, B. Stauffer, D.A. Caron and C. Zhou, Bioisens. Bioelect. 24, 2967 (2009).

This paper may be cited as follows:

Rikizo HATAKEYAMA and Toshiro KANEKO, Plasma Fusion Res. 6, 1106011 (2011).