[Table of Contents]

Plasma and Fusion Research

Volume 5, S2090 (2010)

Regular Articles

An Analysis of an ICRF Antenna with Controllable Toroidal Wavenumber in LHD
Hiroshi KASAHARA, Tetsuo SEKI, Kenji SAITO, Ryuhei KUMAZAWA, Takashi MUTOH, Fujio SHIMPO and Goro NOMURA
National institute for fusion science, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 9 December 2009 / Accepted 28 April 2010 / Published 10 December 2010)


In order to excite fast wave in the ion cyclotron range of frequencies (ICRF) using multiple antennas with the phase difference in the Large Helical Device (LHD), a controllable wavenumber antenna that consists of two single-strap antennas is designed, and the electrical characteristic features of the antenna are estimated by using a three-dimensional electromagnetic commercial code and the simplified antenna model. Controlling the radio-frequency (RF) phase difference between these two single-straps, reverse-phase excitation can be achieved in order to reduce the impurity production. According to this estimate, the RF current profile on the strap surface is strongly concentrated on the both horizontal strap edges, and the electrical strap length at frequency of 85 MHz is longer than the quarter wavelength of 85 MHz (λ85 MHz/4). Excitable wavenumber spectra are different in various RF phases and frequencies. At the low frequencies (< 60 MHz) with in-phase, effective wavenumbers between k = 0 m−1 and k = 10 m−1 can be excited. During the reverse-phase excitation, large (k = 6, 15 m−1) wavenumber spectra with low (k = 0 m−1) wavenumber kept small are obtained.


ICRF, three-dimensional calculation, fast wave, wave excitation, helical plasma, antenna modeling, antenna loading

DOI: 10.1585/pfr.5.S2090


  • [1] T. Mutoh, R. Kumazawa, T. Seki, T. Watari, K. Saito et al., Phys. Rev. Lett. 85, 4530 (2000).
  • [2] R. Kumazawa, T. Mutoh, T. Seki, T. Watari, K. Saito, Y. Torii et al., Phys. Plasmas 8, 2139 (2001).
  • [3] K. Saito, R. Kumazawa, T. Mutoh, T. Seki, T. Watari et al., Nucl. Fusion 41, 1021 (2001).
  • [4] H. Kasahara, T. Oosako, Y. Takase, N. Takeuchi, K. Saito et al., J. Korean Phys. Soc. 49, S192 (2006).
  • [5] O. Motojima, H. Yamada, A. Komori, N. Ohyabu, T. Mutoh et al., Nucl. Fusion 47, S668 (2007).
  • [6] R. Kumazawa, T. Mutoh, K. Saito, T. Seki, H. Kasahara et al., Proceeding of 22th IAEA Fusion Energy Conference (2008), IAEA-EX/P6-29.
  • [7] J. R. Myra, D. A. D'Ippolito, D. A. Russell, L. A. Berry, E. F. Jaeger and M. D. Carter, Nucl. Fusion 46, S455 (2006).
  • [8] S. J. Wukitch, B. Labombard, Y. Lin, B. Lipschultz, E. Marmar, M. L. Reinke and D. G. Whyte, J. Nucl. Mater. 390-391, 951 (2009).
  • [9] HFSSTM , IEEE MTT-S International Microwave Symposium, Honolulu, USA, June 5 (2007).
  • [10] T. Mutoh et al., “Elctromagnetic field simulation for ICRF antenna and comparison with experimental results in LHD”, ITC19th (2009).
  • [11] K. Saito et al., Annual Report of National Institute for Fusion Science April 2008-March 2009, 120 (2009).
  • [12] V. Bobkov et al., J. Nucl. Mater. 390-391, 900 (2009).
  • [13] H. Bosttollier-Curtet, M. EI Khaldi et al., 25th Symposium on Fusion Technology, Rostock, Germany (2008).
  • [14] P. U. Lamalle et al., Nucl. Fusion 46, 432 (2006).

This paper may be cited as follows:

Hiroshi KASAHARA, Tetsuo SEKI, Kenji SAITO, Ryuhei KUMAZAWA, Takashi MUTOH, Fujio SHIMPO and Goro NOMURA, Plasma Fusion Res. 5, S2090 (2010).