[Table of Contents]

Plasma and Fusion Research

Volume 5, S2073 (2010)

Regular Articles


Calculation of D/XB Values of Hydrocarbon Molecules in Tokamak Edge Plasmas
Hayato KAWAZOME, Kaoru OHYA1), Kensuke INAI1), Jun KAWATA, Kenji NISHIMURA2) and Tetsuro TANABE3)
Department of Information Engineering, Kagawa National College of Technology, Mitoyo, Kagawa 769-1192, Japan
1)
Institute of Technology and Science, The University of Tokusihma, Tokushima, Tokushima 770-8506, Japan
2)
Department of Electrical and Electronics Engineering, Numazu National College of Technology, Numazu, Shizuoka 410-8501, Japan
3)
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
(Received 6 December 2009 / Accepted 14 April 2010 / Published 10 December 2010)

Abstract

In order to investigate the dependence of effective inverse photon-efficiency D/XB values on the plasma parameters, we have been performed calculations of effective D/XB values by Monte Carlo method. Photon fluxes are converted into particle fluxes with aid of D/XB values. A D/XB value is critical factor in the study of chemical erosion by spectroscopic measurement. In modeled tokamak edge plasma, transfer of hydrocarbon molecules (CH4, C2Hx (x = 2,4,6), C3Hy (y = 4,6,8)) and CH and C2 emissions have been simulated. The plasma temperature ranged from 1 eV to 100 eV and the plasma densities are 1018 m−3, 1019 m−3 and 1020 m−3. In the temperature region of less than 3 eV, the calculated D/XB values increase with decreasing temperature due to decreasing of emission counts. In the high temperature region (≥ 10 eV), the D/XB values increase with a rise in the temperature due to decrease of number of fragment of type CH and C2.


Keywords

Plasma wall interaction, Chemical erosion, Hydrocarbon, Spectroscopy, Computer simulation

DOI: 10.1585/pfr.5.S2073


References

  • [1] M. Balden and J. Roth, J. Nucl. Mater. 280, 39 (2000).
  • [2] T. Nakano et al., Nucl. Fusion 42, 689 (2002).
  • [3] A. Cambe et al., J. Nucl. Mater. 313-316, 364 (2003).
  • [4] A. Pospieszczyk et al., UCLA-PPG-1251 (Univ. of California at Los Angeles, 1989).
  • [5] D. G. Whyte et al., Nucl. Fusion 41, 47 (2001).
  • [6] M. F. Stamp et al., Phys. Scr. T91, 13 (2001).
  • [7] A. Pospieszczyk et al., J. Nucl. Mater. 145-147, 574 (1987).
  • [8] K. Inai and K. Ohya, Jpn. J. Appl. Phys. 46, 1149 (2007).
  • [9] R. K. Janev and D. Reiter, Rep. Forschungszentrum Jülich, Jül-3966 (2002).
  • [10] R. K. Janev and D. Reiter, Rep. Forschungszentrum Jülich, Jül-4005 (2003).
  • [11] K. Ohya et al., J. Plasma Fusion Res. Series, in press.
  • [12] U. Fantz et al., J. Nucl. Mater. 337-339, 1087 (2005).
  • [13] S. Brezinsek et al., J. Nucl. Mater. 363-365, 1119 (2007).
  • [14] A. Kirschner et al., J. Nucl. Mater. 313-316, 444 (2003).
  • [15] D. Naujoks et al., J. Nucl. Mater. 266-269, 360 (1999).
  • [16] M. Groth et al., J. Nucl. Mater. 363-365, 157 (2007).
  • [17] S. Brezinsek et al., Phys. Scr. T111, 42 (2004).
  • [18] A. Huber et al., Phys. Scr. T111, 101 (2004).
  • [19] T. Nakano et al., ITPA DSOL Meeting, Univ. of Toronto, Canada, Nov. 6-7, 2006.

This paper may be cited as follows:

Hayato KAWAZOME, Kaoru OHYA, Kensuke INAI, Jun KAWATA, Kenji NISHIMURA and Tetsuro TANABE, Plasma Fusion Res. 5, S2073 (2010).