[Table of Contents]

Plasma and Fusion Research

Volume 5, S2052 (2010)

Regular Articles


Parallel Ion Flow Velocity Measurement Using Laser Induced Fluorescence Method in an Electron Cyclotron Resonance Plasma
Shinji YOSHIMURA, Atsushi OKAMOTO1), Kenichiro TERASAKA2), Kohei OGIWARA2), Mitsutoshi ARAMAKI3) and Masayoshi Y. TANAKA2)
National Institute for Fusion Science, Toki 509-5292, Japan
1)
Department of Quantum Science and Energy Engineering, Tohoku University, Sendai 980-8579, Japan
2)
Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga 816-8580, Japan
3)
Department of Electrical Engineering and Computer Science, Nagoya University, Nagoya 464-8603, Japan
(Received 21 December 2009 / Accepted 23 February 2010 / Published 10 December 2010)

Abstract

Parallel ion flow velocity along a magnetic field has been measured using a laser induced fluorescence (LIF) method in an electron cyclotron resonance (ECR) argon plasma with a weakly-diverging magnetic field. To measure parallel flow velocity in a cylindrical plasma using the LIF method, the laser beam should be injected along device axis; however, the reflection of the incident beam causes interference between the LIF emission of the incident and reflected beams. Here we present a method of quasi-parallel laser injection at a small angle, which utilizes the reflected beam as well as the incident beam to obtain the parallel ion flow velocity. Using this method, we observed an increase in parallel ion flow velocity along the magnetic field. The acceleration mechanism is briefly discussed on the basis of the ion fluid model.


Keywords

ion flow, flow velocity measurement, laser induced fluorescence, tunable dye laser, metastable argon ion, diverging magnetic field, ion acceleration, ECR plasma

DOI: 10.1585/pfr.5.S2052


References

  • [1] H. Tobari, A. Ando, M. Inutake and K. Hattori, Phys. Plasmas 14, 093507 (2007).
  • [2] A. Ando, T. Hagiwara, T. Komagome, K. Hattori and M. Inutake, Plasma Fusion Res. 3, S1018 (2008).
  • [3] K. Yoshida, T. Shibata, A. Nezu, H. Matsuura and H. Akatsuka, J. Plasma Fusion Res. SERIES 8, 923 (2009).
  • [4] C. A. Deline, R. D. Bengtson, B. N. Brieman, M. R. Tushentsov, J. E. Jones, D. G. Chavers, C. C. Dobson and B. M. Schuettpelz, Phys. Plasmas 16, 033502 (2009).
  • [5] K. Nagaoka, A. Okamoto, S. Yoshimura and M. Y. Tanaka, J. Phys. Soc. Jpn. 70, 131 (2001).
  • [6] R. A. Stern and J. A. Johnson III, Phys. Rev. Lett. 34, 1548 (1975).
  • [7] A. Okamoto, S. Yoshimura, S. Kado and M. Y. Tanaka, J. Plasma Fusion Res. 80, 1003 (2004).
  • [8] S. Yoshimura, A. Okamoto and M. Y. Tanaka, J. Plasma Fusion Res. SERIES 8, 11 (2009).
  • [9] W. Gräfen, M. v. Hoesslin, H. Kempkens and J. Uhlenbusch, Phys. Fluids 31, 3044 (1988).
  • [10] N. Sadeghi, T. Nakano, D. J. Trevor and R. A. Gottscho, J. Appl. Phys. 70, 2552 (1991).
  • [11] M . J . Goeckner, J. Goree and T. E. Sheridan, Phys. Fluids B 3, 2913 (1991).
  • [12] D. A. Edrich, R. McWilliams and N. S. Wolf, Rev. Sci. Instrum. 67, 2812 (1996).
  • [13] I. A. Biloiu, E. E Scime and C. Biloiu, Plasma Sources Sci. Technol. 18, 025012 (2009).

This paper may be cited as follows:

Shinji YOSHIMURA, Atsushi OKAMOTO, Kenichiro TERASAKA, Kohei OGIWARA, Mitsutoshi ARAMAKI and Masayoshi Y. TANAKA, Plasma Fusion Res. 5, S2052 (2010).