[Table of Contents]

Plasma and Fusion Research

Volume 5, S2046 (2010)

Regular Articles


ECRH Superposition on Linear Cylindrical Helicon Plasma in the LMD-U
Kunihiro KAMATAKI, Sanae-I. ITOH, Shigeru INAGAKI, Hiroyuki ARAKAWA1), Yoshihiko NAGASHIMA2), Takuma YAMADA2), Masatoshi YAGI, Akihide FUJISAWA and Kimitaka ITOH3)
Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
1)
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoak 816-8580, Japan
2)
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
3)
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
(Received 7 December 2009 / Accepted 13 April 2010 / Published 10 December 2010)

Abstract

Electron cyclotron resonance heating (ECRH) is superimposed on a linear cylindrical helicon plasma in the Large Mirror Device-Upgrade (LMD-U) to study the fluctuation characteristics of high density helicon plasma with/without ECRH injection. The radial profiles of electron density and electron temperature rose by < 10 %, and the drift wave frequency decreased with the ECRH injection. Bicoherence analysis reveals that the nonlinear interaction between drift waves and broad frequency band components exists with or without ECRH injection.


Keywords

ECRH superposition, helicon plasma, drift wave, turbulence, linear cylindrical device

DOI: 10.1585/pfr.5.S2046


References

  • [1] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
  • [2] T. Klinger et al., Phys. Rev. Lett. 79, 3913 (1997).
  • [3] C. Schröder et al., Phys. Plasmas 12, 042103 (2005).
  • [4] G. R. Tynan et al., Plasma Phys. Control. Fusion 48, S51 (2006).
  • [5] M. Ramisch et al., Plasma Phys. Control. Fusion 49, 777 (2007).
  • [6] D. C. Pace et al., Phys. Plasmas 15, 122304 (2008).
  • [7] K. Kamataki et al., Plasma Phys. Control. Fusion 50, 035011 (2008).
  • [8] K. Terasaka et al., Plasma Fusion Res. 2, 031 (2007).
  • [9] T. Yamada et al., Nature Phys. 4, 721 (2008).
  • [10] Y. Nagashima et al., J. Plasma Fusion Res. Series 8, 50 (2009).
  • [11] P. H. Diamond et al., Plasma Phys. Control. Fusion 47, 5 (2005).
  • [12] K. Itoh et al., Transport and Structural Formation in Plasmas (Bristol and Philadelphia: Institute of Physics Publishing, 1999).
  • [13] H. Arakawa et al., Plasma Phys. Control. Fusion 51, 085001 (2009).
  • [14] D. L. Jassby, Phys. Fluids 15, 1590 (1972).
  • [15] Y. C. Kim et al., IEEE Trans. Plasma Sci. RS-7, 120 (1979).
  • [16] I. H. Hutchinson, Principle of Plasma Diagnostics (Cambridge University Press, Cambridge, 2002) 2nd ed.
  • [17] K. Kamataki et al., J. Phys. Soc. Jpn. 76, 054501 (2007).
  • [18] M. A. Lieberman et al., Principles of Plasma Discharges and Material Processing (Wiley, New York, 1).

This paper may be cited as follows:

Kunihiro KAMATAKI, Sanae-I. ITOH, Shigeru INAGAKI, Hiroyuki ARAKAWA, Yoshihiko NAGASHIMA, Takuma YAMADA, Masatoshi YAGI, Akihide FUJISAWA and Kimitaka ITOH, Plasma Fusion Res. 5, S2046 (2010).