[Table of Contents]

Plasma and Fusion Research

Volume 5, S2026 (2010)

Regular Articles


Application of Algebraic Approximation to Three Dimensional Multibody Coulomb Problem: Implementation of GPGPU
Shun-ichi OIKAWA, Koichiro HIGASHI and Yutaka MATSUMOTO
Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan
(Received 7 December 2009 / Accepted 5 March 2010 / Published 10 December 2010)

Abstract

The algebraic model (ALG) proposed by the authors has sufficiently high accuracy in calculating the motion of a test particle with all the field particles at rest. When all the field particles are moving, however, the ALG has relatively poor prediction ability on the motion of the test particle initially at rest. Nonetheless, the ALG approximation gives a good results for the statistical quantities, such as variance of velocity changes or the scattering cross section, for a sufficiently large number of Monte Carlo trials. We have implemented a graphics processing unit (GPU) using NVIDIA's CUDA architecture into the ALG scheme for Coulomb multibody problems. For N=28-body problem, the ALG calculations on the GPU is several times faster than on a typical CPU. The achieved speedup ratios on an NVIDIA GTX-285 are 10.5 and 2500 against the ALG-CPU and the DIM-CPU, respectively both on an Intel Celeron @3.06 GHz.


Keywords

multibody problem, algebraic approximation, diffusion, General Purpose Graphics Processing Unit (GPGPU)

DOI: 10.1585/pfr.5.S2026


References

  • [1] L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience Publishers, New York, 1959) p. 120.
  • [2] P. Helander and D.J. Sigmar, Collisional transport in Magnetized Plasmas., (Cambridge U. P., Cambridge, 2002).
  • [3] S. Oikawa and H. Funasaka, Plasma Fusion Res. 3, S1073 (2008).
  • [4] K. Higashi et al., in Proc. 18th Int. Toki Conf. (ITC18), P258, Toki (2008).
  • [5] S. Oikawa, K. Higashi, and H. Funasaka, Plasma Fusion Res. 5, S1048 (2010).
  • [6] T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977).
  • [7] K. Ida et al., Phys. Rev. Lett. 65, 1364 (1990).
  • [8] W. D. Lee et al., Phys. Rev. Lett. 91, 205003 (2003).
  • [9] http://www.nvidia.com.
  • [10] E. Fehlberg, “Low-order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems”, NASA Technical Report 315 (1969).
  • [11] E. Fehlberg, “Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme”, Computing (Arch. Elektron. Rechnen), 6, 61 (1970).

This paper may be cited as follows:

Shun-ichi OIKAWA, Koichiro HIGASHI and Yutaka MATSUMOTO, Plasma Fusion Res. 5, S2026 (2010).