[Table of Contents]

Plasma and Fusion Research

Volume 5, S2017 (2010)

Regular Articles


Fast Reconnection in Low-density Hydrogen and Pair Plasmas
Naoki BESSHO and Amitava BHATTACHARJEE
Center for Integrated Computation and Analysis of Reconnection and Turbulence, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
(Received 5 December 2009 / Accepted 12 March 2010 / Published 10 December 2010)

Abstract

Magnetic reconnection without a guide field in low-background-density plasmas has been studied by means of two-dimensional particle-in-cell simulations, and results in hydrogen and electron-positron (pair) plasmas have been compared. Reconnection is impulsive, and maximum reconnection rates of the order of one (measured in units of the Alfvén speed) have been observed in both types of plasmas when the background density in the Harris sheets is 1% of the current sheet density. This impulsive, strong reconnection electric field is important for particle acceleration. As the system evolves in time, the electron diffusion region extends in both inflow and outflow directions. Because of the broadening of the diffusion region, the aspect ratio of the diffusion region remains small, so that fast reconnection is sustained. In pair plasmas, the inertial term in the generalized Ohm's law becomes the most dominant term to balance the reconnection electric field before the maximum reconnection rate is attained, which contrasts with hydrogen plasmas where the most dominant term is the pressure tensor term.


Keywords

magnetic reconnection, particle-in-cell simulation, electron-positron plasma, particle acceleration, Hall effect

DOI: 10.1585/pfr.5.S2017


References

  • [1] F. V. Coroniti, Astrophys. J. 349, 538 (1990).
  • [2] C. S. Reynolds, A. C. Fabian, A. Celotti and M. J. Rees, Mon. Not. R. Astron. Soc. 283, 873 (1996).
  • [3] A. Marcowith, G. Henri and N. Renaud, Astron. Astrophys. 331, L57 (1998).
  • [4] J. F. C. Wardle, D. C. Homan, R. Ojha and D. H. Roberts, Nature 395, 457 (1998).
  • [5] K. Hirotani, S. Iguchi, M. Kimura and K. Wajima, Astrophys. J. 545, 100 (2000).
  • [6] E. Asseo, Plasma Phys. Control. Fusion 45, 853 (2003).
  • [7] J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto and P. L. Pritchett, J. Geophys. Res. 106, 3715 (2001).
  • [8] S. M. Thompson, M. G. Kivelson, K. K. Khurana, R. L. McPherron, J. M. Weygand, A. Balogh, H. Réme and L. M. Kistler, J. Geophys. Res. 110, A02212 (2005).
  • [9] K. R. Svenes, B. Lybekk, A. Pedersen and S. Haaland, Ann. Geophys. 26, 2845 (2008).
  • [10] P. L. Pritchett, J. Geophys. Res. 106, 3783 (2001).
  • [11] K. Fujimoto, Phys. Plasmas 13, 072904 (2006).
  • [12] S. Zenitani and M. Hoshino, Astrophys. J. 562, L63 (2001).
  • [13] S. Zenitani and M. Hoshino, Astrophys. J. 670, 702 (2007).
  • [14] S. Zenitani and M. Hoshino, Astrophys. J. 677, 530 (2008).
  • [15] C. H. Jaroschek, R. A. Treumann, H. Lesch and M. Scholer, Phys. Plasmas 11, 1151 (2004).
  • [16] N. Bessho and A. Bhattacharjee, Phys. Rev. Lett. 95, 245001 (2005).
  • [17] N. Bessho and A. Bhattacharjee, Phys. Plasmas 14, 056503 (2007).
  • [18] W. Daughton and H. Karimabadi, Phys. Plasmas 14, 072303 (2007).
  • [19] M. Hesse and S. Zenitani, Phys. Plasmas 14, 112102 (2007).
  • [20] M. Swisdak, Y.-H. Liu and J. F. Drake, Astrophys. J. 680, 999 (2008).
  • [21] S. Zenitani and M. Hesse, Astrophys. J. 684, 1477 (2008).
  • [22] S. Zenitani, M. Hesse and A. Klimas, Astrophys. J. 696, 1385 (2009).
  • [23] N. Bessho and A. Bhattacharjee, accepted in Phys. Plasmas.
  • [24] M. Hoshino, T. Mukai, T. Terasawa and I. Shinohara, J. Geophys. Res. 106, 25979 (2001).
  • [25] A. Ishizawa and R. Horiuchi, Phys. Rev. Lett. 95, 045003 (2005).

This paper may be cited as follows:

Naoki BESSHO and Amitava BHATTACHARJEE, Plasma Fusion Res. 5, S2017 (2010).