[Table of Contents]

Plasma and Fusion Research

Volume 5, S2007 (2010)

Regular Articles

Emission of Visible Light by Hot Dense Metals
Richard M. MORE1,2), Motoshi GOTO3), Frank GRAZIANI2), Pavel NI1) and Hitoki YONEDA4)
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
(Received 9 December 2009 / Accepted 2 March 2010 / Published 10 December 2010)


We consider the emission of visible light by hot metal surfaces having uniform and non-uniform temperature distributions and by small droplets of liquid metal. The calculations employ a nonlocal transport theory for light emission, using the Kubo formula to relate microscopic current fluctuations to the dielectric function of the material. We describe a related algorithm for calculating radiation emission in particle simulation of hot fusion plasmas.


incandescent emission of light, polarized emission, pyrometry, hot metal, warm dense matter

DOI: 10.1585/pfr.5.S2007


  • [1] J. D. Jackson, Classical Electrodynamics, 3rd Ed. (J. Wiley, Hoboken, NJ 1999).
  • [2] M. Born and E. Wolf, Principles of Optics, 5th Ed. (Pergamon Press, Oxford 1975).
  • [3] C. Kittel, Introduction to Solid-State Physics, 3rd Ed. (Wiley, NY 1967); F. Seitz, Modern Theory of Solids (Dover, NY 1987); W. Jones and N. H. March, Theoretical Solid State Physics (Dover, NY 1985).
  • [4] E. Landau and I. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed. (Pergamon Press, Oxford 1984). See section 93, eq. 93-4
  • [5] E. Palik, Handbook of Optical Constants of Solids (Academic Press 1985).
  • [6] Ya. Zel'dovich and Yu. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover 2002).
  • [7] H. C. Van de Hulst, Light Scattering by Small Particles (Dover Publications, New York 1981).
  • [8] A. Sommerfeld, Optics (Academic Press, NY 1954).
  • [9] H. Yoneda, H. Morikami, K. Ueda and R. More, Phys. Rev. Lett. 91, 075004 (2003); H. Yoneda, H. Morikomi, K.-I. Ueda and R. More, J. Plasma Fusion Res. 79, 449 (2003).
  • [10] H. Morikami, H. Yoneda, K.-I. Ueda and R. M. More, Phys. Rev. E70, 035401 (2004).
  • [11] R. A. Millikan, Phys. Rev. 3, 81 (1895); Phys. Rev. 3, 177 (1895); see also A. G. Worthing, J. Opt. Soc. Am. & RSI 13, 635 (1926).
  • [12] R. More, F. Graziani, J. Glosli and M. Surh, High Energy Density Phys. 6, 29 (2010); J. Glosli, F. Graziani, R. More, M. Murillo, F. Streitz and M. Surh, J. Phys. A42, 214030 (2009).
  • [13] R. More, F. Graziani, J. Glosli and M. Surh, High Energy Density Phys. 6, 29 (2010).

This paper may be cited as follows:

Richard M. MORE, Motoshi GOTO, Frank GRAZIANI, Pavel NI and Hitoki YONEDA, Plasma Fusion Res. 5, S2007 (2010).