[Table of Contents]

Plasma and Fusion Research

Volume 5, S1034 (2010)

Regular Articles


Study of Pd Membrane Electrode in Solid Electrolyte Hydrogen (Isotopes) Sensor for Application to Liquid Blankets
Tomoko OHSHIMA 1,2), Masatoshi KONDO 2,3), Masahiro TANAKA 3) and Takeo MUROGA 2,3)
1)
TYK Co. Ltd., 3-1 Obata-cho, Tajimi 507-8607, Japan
2)
Department of Fusion Science, The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292, Japan
3)
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
(Received 9 January 2009 / Accepted 2 October 2009 / Published 26 March 2010)

Abstract

On-line measurement of hydrogen isotopes in corrosive environments is essential for the development of liquid blanket systems for fusion reactors. In the present study, a Pd membrane electrode for a solid electrolyte hydrogen sensor was developed. An electrode fabricated on the sensor surface was metallurgically analyzed and was found to be a compact layer with much lower porosity than conventional Pt electrodes. This compact electrode can serve as a protective layer against corrosion of the sensor material during measurement. The response and stability of the sensor with the Pd membrane electrode was investigated in an Ar-hydrogen gas mixture environment. The electromotive force of the sensor with the Pd compact electrode agreed with a theoretical calculation, assuming the same three-phase boundary as in the sensor with a porous Pt electrode.


Keywords

liquid blanket, hydrogen sensor, solid electrolyte, electrode, palladium, Flibe, Flinak, Pb-17Li, Li

DOI: 10.1585/pfr.5.S1034


References

  • [1] A. Sagara et al., Fusion Tecnol. 39, 753 (2001).
  • [2] H. Moriyama, S. Tanaka, D. K. Sze, J. Reimann and A. Terlain, Fusion Eng. Des. 28, 226 (1995).
  • [3] A. Sagara et al., Fusion Eng. Des. 49-50, 661 (2000).
  • [4] M. Kondo, T. Muroga, K. Katahira and T. Oshima, Journal of Power and Energy Systems 2, 590 (2008).
  • [5] M. Kondo, T. Muroga, K. Katahira and T. Oshima, Fusion Eng. Des. 83, 1277 (2008).
  • [6] T. Yajima, K. Koide, H. Takai, N. Fukatsu and H. Iwahara, Solid State Ionics 79, 333 (1995).
  • [7] N. Fukatsu, N. Kurita, K. Koide and T. Ohashi, Solid State Ionics 113, 219 (1998).
  • [8] H. Iwahara, H. Uchida and T. Esaka, Progress in Batteries & Solar Cells 4, 279 (1982).
  • [9] H. Iwahara, H. Uchida and N. Maeda, J. Power Sources 7, 293 (1982).
  • [10] G. Alefeld and J. Völkl, Hydrogen in Metals 1 (SpringerVerlag Berlin Heidelberg New York, 1978) p. 325.
  • [11] G. Marnellos, A. Kyriakou, F. Florou, T. Angelidis and M. Stoukides, Solid State Ionics 125, 279 (1999).
  • [12] S. Zisekas, G. Karagiannakis and M. Stoukides, Solid State Ionics 178, 2929 (2005).
  • [13] H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3/4, 359 (1981).
  • [14] T. Yajima, H. Iwahara, K. Koide and K. Yamamoto, Sens. Actuators B 5, 145 (1991).
  • [15] T. Yajima, K. Koide, H. Takai, N. Fukatsu and H. Iwahara, Solid State Ionics 79, 333 (1995).
  • [16] H. Matsumoto, Materia Japan 44, 226 (2005) [in Japanese].

This paper may be cited as follows:

Tomoko OHSHIMA , Masatoshi KONDO , Masahiro TANAKA and Takeo MUROGA , Plasma Fusion Res. 5, S1034 (2010).