[Table of Contents]

Plasma and Fusion Research

Volume 5, S1023 (2010)

Regular Articles


Formation Condition of Fiberform Nanostructured Tungsten by Helium Plasma Exposure
Wataru SAKAGUCHI, Shin KAJITA1), Noriyasu OHNO, Makoto TAKAGI and Hiroaki KURISHITA2)
Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya 464-8608, Japan
1)
EcoTopia Science Institute, Nagoya University, Nagoya 464-8608, Japan
2)
International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313, Japan
(Received 9 January 2009 / Accepted 16 May 2009 / Published 26 March 2010)

Abstract

Tungsten samples were irradiated with high density helium plasma in the divertor plasma simulator NAGDIS to investigate the formation condition of the fiberform nanostructured tungsten. Experimental results indicated that the surface temperature threshold for the formation of nanostructure was approximately 1000 K when the incident ion energy was 50 eV. When the surface temperature was above 1000 K, the width of the nanostructure increased with the surface temperature. Three tungsten samples manufactured by different procedures (ultra fine grained tungsten, ITER-reference tungsten grade and powder metallurgy tungsten) were exposed to the helium plasma. The nanostructure was formed on all samples.


Keywords

Helium, Tungsten, Reflectivity, Nanostructure, NAGDIS-II

DOI: 10.1585/pfr.5.S1023


References

  • [1] ITER Physics Basis, Nucl. Fusion 39, 2137 (1999).
  • [2] A. Litnovsky, V. S. Voitsenya, A. Costley and A. J. H. Donne, Nucl. Fusion 47, 833 (2007).
  • [3] D. Nishijima, M. Y. Ye, N. Ohno and S. Takamura, J. Nucl. Mater. 329-333, 1029 (2004).
  • [4] S. Takamura, N. Ohno, D. Nishijima and S. Kajita, PFR 1, 051 (2006).
  • [5] R. N. Stuart, M. W. Guinan and R. J. Borg, Radiation Effects 30, 129 (1976).
  • [6] W. Sakaguchi, S. Kajita, N. Ohno and M. Takagi, J. Nucl. Mater. 390-391, 1149 (2009).
  • [7] S. Kajita, S. Takamura, N. Ohno, D. Nishijima, H. Iwakiri and N. Yoshida, Nucl. Fusion 47, 1358 (2007).
  • [8] S. Kajita, N. Ohno, W. Sakaguchi and M. Takagi, PFR 4, 004 (2009).
  • [9] M. J. Baldwin and R. P. Doerner, Nucl. Fusion 48, 035001 (2008).
  • [10] S. Takamura, N. Ohno and D. Nishijima, Plasma Sources Sci. Technol. 11, A42 (2002).
  • [11] S. Masuzaki, N. Ohno and S. Takamura, J. Nucl. Mater. 223, 286 (1995).
  • [12] A. Ebihara, M. Tokitani, K. Tokunaga, T. Fujiwara, A. Sagara and N. Yoshida, J. Nucl. Mater. 363-365, 1195 (2007).
  • [13] T. Sugie and A. Kukushkin, Private communication.
  • [14] D. Nishijima, H. Iwakiri, K.Amano, M. Y. Ye, N. Ohno, K. Tokunaga, N. Yoshida and S. Takamura, Nucl. Fusion 45, 669 (2005).
  • [15] N. Yoshida, H. Iwakiri, K. Tokunaga and T. Baba, J. Nucl. Mater. 337, 946 (2005).
  • [16] H. Trinkaus and B. N. Singh, J. Nucl. Mater. 323, 229 (2003).
  • [17] H. Kurishita, S. Matsuo, H. Arakawa, S. Kobayashi, K. Nakai, T. Takida, K. Takabe and M. Kawai, Mater. Sci. Eng. A 477, 162 (2008).
  • [18] E. Koch-Bienemann, L. Berg and G. Czack, Gmelin Handbook of Inorganic Chemistry (Tungsten) (Springer, Berlin, 1989), Suppl. A3.

This paper may be cited as follows:

Wataru SAKAGUCHI, Shin KAJITA, Noriyasu OHNO, Makoto TAKAGI and Hiroaki KURISHITA, Plasma Fusion Res. 5, S1023 (2010).